×

Explicit solutions of boundary-value problems for \((2+1)\)-dimensional integrable systems. (English) Zbl 1307.35269

Math. Notes 93, No. 3, 360-372 (2013); translation from Mat. Zametki 93, No. 3, 333-346 (2013).
Summary: Two nonlinear integrable models with two space variables and one time variable, the Kadomtsev-Petviashvili equation and the two-dimensional Toda chain, are studied as well-posed boundary-value problems that can be solved by the inverse scattering method. It is shown that there exists a multitude of integrable boundary-value problems and, for these problems, various curves can be chosen as boundary contours; besides, the problems in question become problems with moving boundaries. A method for deriving explicit solutions of integrable boundary-value problems is described and its efficiency is illustrated by several examples. This allows us to interpret the integrability phenomenon of the boundary condition in the traditional sense, namely as a condition for the availability of wide classes of solutions that can be written in terms of well-known functions.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C05 Solutions to PDEs in closed form
35C08 Soliton solutions
Full Text: DOI

References:

[1] Б. Б. Кадомцев, В. И. Петвиашвили, “Об устойчивости уединенных волн в среде со слабой дисперсией”, Докл. АН СССР, 192:4 (1970), 753 – 756 · Zbl 0217.25004
[2] А. В. Михайлов, “Об интегрируемости двумерного обобщения цепочки Тода”, Письма в ЖЭТФ, 30:7 (1979), 443 – 448
[3] С. П. Новиков, С. В. Манаков, Л. П. Питаевский, В. Е. Захаров, Теория солитонов. Метод обратной задачи, Наука, М., 1980 · Zbl 0598.35003
[4] В. С. Дрюма, “Об аналитическом решении двумерного уравнения Кортевега – де Фриза (КдФ)”, Письма в ЖЭТФ, 19:12 (1974), 753 – 755
[5] В. Е. Захаров, А. Б. Шабат, “Схема интегрирования нелинейных уравнений математической физики методом обратной задачи рассеяния. I”, Функц. анализ и его прил., 8:3 (1974), 43 – 53 · Zbl 0303.35024 · doi:10.1007/BF01075696
[6] Е. К. Склянин, “Граничные условия для интегрируемых уравнений”, Функц. анализ и его прил., 21:2 (1987), 86 – 87 · Zbl 0643.35093 · doi:10.1007/BF01078038
[7] И. Т. Хабибуллин, “Граничные задачи на полуплоскости для уравнения Ишимори, совместимые с методом обратной задачи рассеяния”, ТМФ, 91:3 (1992), 363 – 376
[8] И. Т. Хабибуллин, Е. В. Гудкова, “Краевые условия для многомерных интегрируемых уравнений”, Функц. анализ и его прил., 38:2 (2004), 71 – 83 · Zbl 1086.37036 · doi:10.1023/B:FAIA.0000034044.01773.dd
[9] И. Т. Хабибуллин, Е. В. Гудкова, “Уравнение Кадомцева – Петвиашвили на полуплоскости”, ТМФ, 140:2 (2004), 230 – 240 · Zbl 1178.35319 · doi:10.1023/B:TAMP.0000036539.35565.1f
[10] V. Adler, B. Gu\"rel, M. Gu\"rses, I. T. Habibullin, “Boundary conditions for integrable equations”, J. Phys. A: Math. Gen., 30:10 (1997), 3505 – 3513 · Zbl 0927.35093 · doi:10.1088/0305-4470/30/10/025
[11] M. Gu\"rses, I. Habibullin, K. Zheltukhin, “Integrable boundary value problems for elliptic type Toda lattice in a disk”, J. Math. Phys., 48:10 (2007), 102702 · Zbl 1152.81459 · doi:10.1063/1.2799256
[12] J. Stefan, “U\"ber die Theorie der Eisbuidung, Insbesondere U\"ber die Eisbildung im Polarmeere”, Sitzungsber. Wien. Akad. Math. Naturwiss., 98 (1890), 473 – 484
[13] A. V. Mikhailov, “The reduction problem and the inverse scattering method”, Phys. D, 3:1-2 (1981), 73 – 117 · Zbl 1194.37113 · doi:10.1016/0167-2789(81)90120-2
[14] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1 – 95 · Zbl 0577.58020
[15] A. Nakamura, “Exact Bessel type solution of the two-dimensional Toda lattice equation”, J. Phys. Soc. Japan, 52:2 (1983), 380 – 387 · doi:10.1143/JPSJ.52.380
[16] М. В. Бабич, В. Б. Матвеев, М. А. Салль, “Бинарное преобразование Дарбу для цепочки Тоды”, Вопросы квантовой теории поля и статистической физики, 5, Зап. научн. сем. ЛОМИ, 145, Изд-во «Наука», Ленинград. отд., Л., 1985, 34 – 45 · Zbl 0598.58048
[17] I. T. Habibullin, A. N. Vil/danov, “Integrable boundary conditions for nonlinear lattices”, SIDE III – Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes, 25, Amer. Math. Soc., Providence, RI, 2000, 173 – 180 · Zbl 0958.37054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.