×

Generalized dressing method for the extended two-dimensional Toda lattice hierarchy and its reductions. (English) Zbl 1218.37090

Summary: In this paper, we solve the extended two-dimensional Toda lattice hierarchy (ex2DTLH) by the generalized dressing method developed by X. Liu et al. [J. Math. Phys. 50, No. 5, 053506 (2009; Zbl 1187.35218)]. General Casoratian determinant solutions for this hierarchy are obtained. In particular, explicit solutions of soliton-type are formulated by using the \(\tau\)-function in the form of exponential functions. The periodic reduction and one-dimensional reduction of ex2DTLH are studied by finding the constraints. Many reduced systems are shown, including the periodic ex2DTLH, sinh-Gordon equation with self-consistent sources and one-dimensional Toda lattice hierarchy with self-consistent sources. The general solutions of reduced hierarchies are found from the Casoratian solutions of ex2DTLH, by considering additional constraints during the dressing procedure.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
15A04 Linear transformations, semilinear transformations
35Q53 KdV equations (Korteweg-de Vries equations)
35S05 Pseudodifferential operators as generalizations of partial differential operators

Citations:

Zbl 1187.35218
Full Text: DOI

References:

[1] Aratyn H, Nissimov E, Pacheva S. From one-component KP hierarchy to two-component KP hierarchy and back. arXiv:solv-int/9808003v1
[2] Carlet G. The Hamiltonian structures of the two-dimensional Toda lattice and R-matrices. Lett Math Phys, 2005, 71: 209–226 · Zbl 1084.37051 · doi:10.1007/s11005-005-0629-y
[3] Carlet G, Dubrovin B, Mertens L. Infinite-dimensional Frobenius manifolds for 2+1 integrable systems. Math Ann, to appear, arXiv:0902.1245 · Zbl 1208.53090
[4] Carlet G, Dubrovin B, Zhang Y. The extended Toda hierarchy. Moscow Math J, 2004, 4: 313–332, arXiv:nlin/0306060v2 · Zbl 1076.37055
[5] Chakravarty S, Kodama Y. Soliton solutions of the KP equation and application to shallow water waves. Stud Appl Math, 2009, 123: 83–151, arXiv:0902.4433 · Zbl 1185.35219 · doi:10.1111/j.1467-9590.2009.00448.x
[6] Date E, Kashiwara M, Jimbo M, et al. Transformation groups for soliton equations, I–VII. Proc Japan Acad Ser A Math Sci, 1981, 57: 342–347, 387–392; J Phys Soc Japan, 1981, 50: 3806–3812, 3813–3818; Physica D, 1982, 4: 342–365; Publ RIMS Kyoto Univ, 1982, 18: 1107–1110, 1111–1119 · Zbl 0538.35065 · doi:10.3792/pjaa.57.342
[7] Dickey L A. Soliton Equations and Hamiltonian Systems. Singapore: World Scientific, 2002 · Zbl 0753.35075
[8] Dimakis A, Muller-Hoissen F. Extension of noncommutative soliton hierarchies. J Phys A, 2004, 37: 4069–4084, arXiv:hep-th/0401142 · Zbl 1059.81147 · doi:10.1088/0305-4470/37/13/010
[9] Hamanaka M, Toda K. Towards noncommutative integrable systems. Phys Lett A, 2003, 316: 77–83 · Zbl 1031.37046 · doi:10.1016/S0375-9601(03)01138-1
[10] He J S, Li Y H, Cheng Y. q-deformed KP hierarchy and q-deformed constrained KP hierarchy. Symmetry Integrability Geom Methods Appl, 2006, 2: 060 · Zbl 1093.37027
[11] Kac V G, van De Leur J W. The n-component KP hierarchy and representation theory. J Math Phys, 2003, 44: 3245–3293 · Zbl 1062.37071 · doi:10.1063/1.1590055
[12] Kakei S, Ikeda T, Takasaki K. Hierarchy of (2+1)-dimensional nonlinear Schrödinger equation, self-dual Yang-Mills equation and toroidal Lie algebras. Ann Henri Poincare, 2001, 3: 817–845, arXiv:nlin/0107065 · Zbl 1054.35093 · doi:10.1007/s00023-002-8638-1
[13] Kupershmidt B. KP or mKP, Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems. Mathematical Surveys and Monographs 78. Providence, RI: Amer Math Soc, 2000
[14] Li C Z, He J S, Wu K, et al. Tau function and Hirota bilinear equations for the Extended bigraded Toda Hierarchy. J Math Phys, 2010, 51: 043514, arXiv:0906.0624 · Zbl 1310.37033 · doi:10.1063/1.3316125
[15] Lin R L, Liu X J, Zeng Y B. A new extended q-deformed KP hierarchy. J Nonlinear Math Phys, 2008, 15: 333 · Zbl 1168.37020 · doi:10.2991/jnmp.2008.15.3.6
[16] Liu S W, Cheng Y, He J S. The determinant representation of the gauge transformation for the discrete KP hierarchy. Sci China Math, 2010, 53: 1195–1206 · Zbl 1193.35170 · doi:10.1007/s11425-010-0067-x
[17] Liu X J, Lin R L, Jin B, et al. A generalized dressing approach for solving the extended KP and the extended mKP hierarchy. J Math Phys, 2009, 50: 053506 · Zbl 1187.35218 · doi:10.1063/1.3126494
[18] Liu X J, Zeng Y B. On the Toda lattice equation with self-consistent sources. J Phys A, 2005, 38: 8951–8965 · Zbl 1113.37053 · doi:10.1088/0305-4470/38/41/008
[19] Liu X J, Zeng Y B, Lin R L. A new extended KP hierarchy. Phys Lett A, 2008, 372: 3819–3823 · Zbl 1220.37055 · doi:10.1016/j.physleta.2008.02.070
[20] Liu X J, Zeng Y B, Lin R L. An extended two-dimensional Toda lattice hierarchy and two-dimensional Toda lattice with self-consistent sources. J Math Phys, 2008, 49: 093506 · Zbl 1152.81537 · doi:10.1063/1.2976685
[21] Mineev-Weinstein M, Wiegmann P B, Zabrodin A. Integrable structure of interface dynamics. Phys Rev Lett, 2000, 84: 5106–5109 · doi:10.1103/PhysRevLett.84.5106
[22] Oevel W. Darboux transformations for the integrable lattice systems. In: Nonlinear Physics: Theory and Experiment. Singapore: World Scientific, 1996, 233–240 · Zbl 0941.37552
[23] Oevel W, Carillo S. Squared eigenfunction symmetries for soliton equations: part I; part II. J Math Anal Appl, 1998, 217: 161–178, 179–199 · Zbl 0896.35117 · doi:10.1006/jmaa.1997.5707
[24] Oevel W, Schief W. Squared eigenfunctions of the (modified) KP hierarchy and scattering problems of Loewner type. Rev Math Phys, 1994, 6: 1301–1338 · Zbl 0841.35103 · doi:10.1142/S0129055X94000468
[25] Oevel W, Strampp W. Wronskian solutions of the constrained Kadomtsev-Petviashvili hierarchy. J Math Phys, 1996, 37: 6213–6219 · Zbl 0862.35108 · doi:10.1063/1.531788
[26] Ogawa Y. On the (2+1)-dimensional extension of 1-dimensional Toda lattice hierarchy. J Nonlinear Math Phys, 2008, 15: 48–65 · Zbl 1169.37015 · doi:10.2991/jnmp.2008.15.1.5
[27] Olver P J, Sokolov V V. Integrable evolution equations on associative algebras. Comm Math Phys, 1998, 193: 245–268 · Zbl 0908.35124 · doi:10.1007/s002200050328
[28] Takasaki K. Anti-self-dual Yang-Mills equations on noncommutative space-time. J Geom Phys, 2001, 37: 291–306 · Zbl 1002.53061 · doi:10.1016/S0393-0440(00)00056-5
[29] Takasaki K. Two extensions of 1D Toda hierarchy. arXiv:1002.4688 · Zbl 1202.35200
[30] Tu M H. Q-deformed KP hierarchy: Its additional symmetries and infinitesimal Bäcklund transformations. Lett Math Phys, 1999, 99: 95–103 · Zbl 0949.37052 · doi:10.1023/A:1007647722911
[31] Ueno K, Takasaki K. Toda lattice hierarchy. Adv Stud Pure Math, 1984, 4: 1–95 · Zbl 0577.58020
[32] Wiegmann P B, Zabrodin A. Conformal maps and integrable hierarchies. Comm Math Phys, 2000, 213: 523–538 · Zbl 0973.37042 · doi:10.1007/s002200000249
[33] Wu H X, Liu X J, Zeng Y B. Two new multi-component BKP hierarchies. Commun Theor Phys, 2009, 51: 193–199 · Zbl 1179.37087 · doi:10.1088/0253-6102/51/2/01
[34] Wu H X, Liu X J, Zeng Y B. A new multi-component CKP hierarchy. arXiv:0710.4985v1
[35] Yao Y Q, Liu X J, Zeng Y B. A new extended discrete KP hierarchy and generalized dressing method. J Phys A, 2009, 42: 454026, arXiv:0907.2783v1 · Zbl 1209.37082 · doi:10.1088/1751-8113/42/45/454026
[36] Zeng Y B, Ma W X, Lin R L. Integration of the soliton hierarchy with self-consistent sources. J Math Phys, 2000, 41: 5453–5489 · Zbl 0968.37023 · doi:10.1063/1.533420
[37] Zhang D J, Chen D Y. The N-soliton solutions of the sine-Gordon equation with self-consistent sources. Phys A, 2003, 321: 467–481 · Zbl 1011.35116 · doi:10.1016/S0378-4371(02)01742-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.