×

Factorial-type Schur functions, orthogonal rational functions, and discrete dressing chains. (English) Zbl 1379.37123

The aim of this paper is to clarify a relationship between orthogonal rational functions and discrete-time integrable systems (discrete dressing chains). It is shown that orthogonal rational functions can be constructed using a multiparameter deformation of the Schur functions, referred to by the authors as factorial-type Schur functions (since they are an extension of the factorial Schur functions). Properties of the factorial-type Schur functions are then used to derive spectral equations for the orthogonal rational functions. The compatibility condition of the spectral equations then leads to a discrete dressing chain, this being a Toda-type discrete-time integrable system describing dressing transformations for orthogonal rational functions.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
33C47 Other special orthogonal polynomials and functions
05E05 Symmetric functions and generalizations
Full Text: DOI

References:

[1] Moser, J.; Moser, J., Finitely many mass points on the line under the influence of an exponential potential - an integrable system, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, 38, 467-497 (1975) · Zbl 0323.70012
[2] Mukaihira, A.; Nakamura, Y., Integrable discretization of the modified KdV equation and applications, Inverse Probl., 16, 413-424 (2000) · Zbl 0964.35152 · doi:10.1088/0266-5611/16/2/310
[3] Mukaihira, A.; Nakamura, Y., Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, J. Comput. Appl. Math., 139, 75-94 (2002) · Zbl 1005.37038 · doi:10.1016/S0377-0427(01)00388-0
[4] Henrici, P., Applied and Computational Complex Analysis, Volume 1: Power Series-Integration-Conformal Mapping-Location of Zeros (1974) · Zbl 0313.30001
[5] Spiridonov, V.; Zhedanov, A., Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal., 2, 369-398 (1995) · Zbl 0859.33017 · doi:10.4310/MAA.1995.v2.n4.a1
[6] Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs (1995) · Zbl 0824.05059
[7] Lascoux, A., Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, 99 (2003) · Zbl 1039.05066
[8] Miwa, T.; Jimbo, M.; Date, E., Solitons: Differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics, 135 (2000) · Zbl 0986.37068
[9] Bultheel, A.; González-Vera, P.; Hendriksen, E.; Njåstad, O., Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, 5 (1999) · Zbl 1014.42017
[10] Ismail, M. E. H.; Masson, D. R., Generalized orthogonality and continued fractions, J. Approximation Theory, 83, 1-40 (1995) · Zbl 0846.33005 · doi:10.1006/jath.1995.1106
[11] Zhedanov, A., Biorthogonal rational functions and the generalized eigenvalue problem, J. Approximation Theory, 101, 303-329 (1999) · Zbl 1058.42502 · doi:10.1006/jath.1999.3339
[12] Spiridonov, V.; Zhedanov, A., Spectral transformation chains and some new biorthogonal rational functions, Commun. Math. Phys., 210, 49-83 (2000) · Zbl 0989.33008 · doi:10.1007/s002200050772
[13] Miyaura, R.; Mukaihira, A., Generalized factorial Schur functions, biorthogonal rational functions and the \(R_{II}\) chain, J. Phys. A: Math. Theor., 44, 395202 (2011) · Zbl 1280.33010 · doi:10.1088/1751-8113/44/39/395202
[14] Miyaura, R.; Mukaihira, A., Rational solution to the \(R_{II}\) chain, AIP Conf. Proc., 1389, 1786-1792 (2011) · doi:10.1063/1.3636955
[15] Biedenharn, L. C.; Louck, J. D., A new class of symmetric polynomials defined in terms of tableaux, Adv. Appl. Math., 10, 396-438 (1989) · Zbl 0698.05008 · doi:10.1016/0196-8858(89)90023-7
[16] Biedenharn, L. C.; Louck, J. D., Inhomogeneous basic set of symmetric polynomials defined by tableaux, Proc. Natl. Acad. Sci. U. S. A., 87, 1441-1445 (1990) · Zbl 0711.33013 · doi:10.1073/pnas.87.4.1441
[17] Macdonald, I. G., Schur functions: Theme and variations, Publ. IRMA Strasbourg, 498/S-28, 5-39 (1992) · Zbl 0889.05073
[18] Chen, W. Y. C.; Louck, J. D., The factorial Schur function, J. Math. Phys., 34, 4144-4160 (1993) · Zbl 0787.05091 · doi:10.1063/1.530032
[19] Goulden, I.; Greene, C., A new tableau representation for supersymmetric Schur functions, J. Algebra, 170, 687-703 (1994) · Zbl 0840.20008 · doi:10.1006/jabr.1994.1361
[20] Okounkov, A., Quantum immanants and higher Capelli identities, Transform. Groups, 1, 99-126 (1996) · Zbl 0864.17014 · doi:10.1007/BF02587738
[21] Okounkov, A.; Olshanski, G., Shifted Schur functions, St. Petersburg Math. J., 9, 239-300 (1998) · Zbl 0894.05053
[22] Molev, A. I., Comultiplication rules for the double Schur functions and Cauchy identities, Electron. J. Combinatorics, 16, #R13 (2009) · Zbl 1182.05128
[23] Ueno, K.; Takasaki, K.; Okamoto, K., Toda lattice hierarchy, Group Representations and Systems of Differential Equations (Advanced Studies in Pure Mathematics 4), 1-95 (1984) · Zbl 0577.58020
[24] Hirota, R., The Direct method in soliton theory, Cambridge Tracts in Mathematics, 155 (2004) · Zbl 1099.35111
[25] Mukaihira, A., A τ-function on the inhomogeneous lattice and the classical isotropic Heisenberg spin chain, J. Phys. A: Math. Gen., 41, 475201 (2008) · Zbl 1157.37018 · doi:10.1088/1751-8113/41/47/475201
[26] Vinet, L.; Zhedanov, A., An integrable chain and bi-orthogonal polynomials, Lett. Math. Phys., 46, 233-245 (1998) · Zbl 0957.37055 · doi:10.1023/A:1007563402749
[27] Minesaki, Y.; Nakamura, Y., The discrete relativistic Toda molecule equation and a Padé approximation algorithm, Numer. Algorithms, 27, 219-235 (2001) · Zbl 1078.81536 · doi:10.1023/A:1011897724524
[28] Mukaihira, A.; Tsujimoto, S., Determinant structure of \(R_I\) type discrete integrable system, J. Phys. A: Math. Gen., 37, 4557-4565 (2004) · Zbl 1058.81035 · doi:10.1088/0305-4470/37/16/006
[29] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (1987) · Zbl 0632.58004
[30] Ohta, Y.; Hirota, R.; Tsujimoto, S.; Imai, T., Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy, J. Phys. Soc. Jpn., 62, 1872-1886 (1993) · Zbl 0972.37536 · doi:10.1143/JPSJ.62.1872
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.