×

Liouville quantum gravity metrics are not doubling. (English) Zbl 07923898

Summary: We observe that non-doubling metric spaces can be characterized as those that contain arbitrarily large sets of approximately equidistant points and use this to show that, for \(\gamma\in(0, 2]\), the \(\gamma\)-Liouville quantum gravity metric is almost surely not doubling and thus cannot be quasisymmetrically embedded into any finite-dimensional Euclidean space. This generalizes the corresponding result of Troscheit [34] for the Brownian map (which is equivalent to the case \(\gamma = \sqrt{8/3}\)).

MSC:

60D05 Geometric probability and stochastic geometry
28A80 Fractals
83C45 Quantization of the gravitational field

References:

[1] Elena S. Afanas’eva and Viktoriia V. Bilet, Quasi-symmetric mappings and their generalizations on Riemannian manifolds, J. Math. Sci. (N.Y.) 258 (2021), no. 3, 265-275. MathSciNet: MR4425396 · Zbl 1476.30092
[2] Patrice Assouad, Pseudodistances, facteurs et dimension métrique, Seminar on Harmonic Analysis (1979-1980) (French), Publ. Math. Orsay 80, vol. 7, Univ. Paris XI, Orsay, 1980, pp. 1-33. MathSciNet: MR613989 · Zbl 0486.54021
[3] Patrice Assouad, Plongements lipschitziens dans \(\mathbb{R}^n\), Bull. Soc. Math. France 111 (1983), no. 4, 429-448. MathSciNet: MR763553 · Zbl 0597.54015
[4] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1964 original. MathSciNet: MR1852066 · Zbl 0984.53001
[5] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971, Étude de certaines intégrales singulières. MathSciNet: MR0499948 · Zbl 0224.43006
[6] Jian Ding, Julien Dubédat, Alexander Dunlap, and Hugo Falconet, Tightness of Liouville first passage percolation for \(\mathit{\gamma} \in(0, 2)\), Publ. Math. Inst. Hautes Études Sci. 132 (2020), 353-403. MathSciNet: MR4179836 · Zbl 1455.82008
[7] Jian Ding and Ewain Gwynne, The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds, Comm. Math. Phys. 374 (2020), no. 3, 1877-1934. MathSciNet: MR4076090 · Zbl 1436.83024
[8] Jian Ding and Ewain Gwynne, Uniqueness of the critical and supercritical Liouville quantum gravity metrics, Proc. Lond. Math. Soc. (3) 126 (2023), no. 1, 216-333. MathSciNet: MR4535021 · Zbl 1522.60020
[9] Jian Ding and Ewain Gwynne, The critical Liouville quantum gravity metric induces the Euclidean topology, Front. Math. 19 (2024), no. 1, 1-46. MathSciNet: MR4688307 · Zbl 1543.60015
[10] Julien Dubédat, Hugo Falconet, Ewain Gwynne, Joshua Pfeffer, and Xin Sun, Weak LQG metrics and Liouville first passage percolation, Probab. Theory Related Fields 178 (2020), no. 1-2, 369-436. MathSciNet: MR4146541 · Zbl 1469.60054
[11] Bertrand Duplantier, Rémi Rhodes, Scott Sheffield, and Vincent Vargas, Renormalization of critical Gaussian multiplicative chaos and KPZ relation, Comm. Math. Phys. 330 (2014), no. 1, 283-330. MathSciNet: MR3215583 · Zbl 1297.60033
[12] Bertrand Duplantier and Scott Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), no. 2, 333-393. MathSciNet: MR2819163 · Zbl 1226.81241
[13] Jonathan M. Fraser, Assouad dimension and fractal geometry, Cambridge Tracts in Mathematics, vol. 222, Cambridge University Press, Cambridge, 2021. MathSciNet: MR4411274 · Zbl 1467.28001
[14] Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179-195. MathSciNet: MR630949 · Zbl 0467.53021
[15] Ewain Gwynne, Nina Holden, and Xin Sun, Mating of trees for random planar maps and Liouville quantum gravity: a survey, Topics in statistical mechanics (Cédric Boutillier and Kilian Raschel, eds.), Panoramas et Synthèses [Panoramas and Syntheses], vol. 59, Société Mathématique de France, Paris, 2023, pp. 41-120. MathSciNet: MR4619309 · Zbl 1516.82003
[16] Ewain Gwynne and Jason Miller, Local metrics of the Gaussian free field, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 5, 2049-2075. MathSciNet: MR4245606 · Zbl 1478.60041
[17] Ewain Gwynne and Jason Miller, Conformal covariance of the Liouville quantum gravity metric for \(\mathit{\gamma} \in(0, 2)\), Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021), no. 2, 1016-1031. MathSciNet: MR4260493 · Zbl 1472.60020
[18] Ewain Gwynne and Jason Miller, Existence and uniqueness of the Liouville quantum gravity metric for \(\mathit{\gamma} \in(0, 2)\), Invent. Math. 223 (2021), no. 1, 213-333. MathSciNet: MR4199443 · Zbl 1461.83018
[19] Ewain Gwynne, Jason Miller, and Scott Sheffield, The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, Ann. Probab. 49 (2021), no. 4, 1677-1717. MathSciNet: MR4260465 · Zbl 1484.60007
[20] Ewain Gwynne and Joshua Pfeffer, KPZ formulas for the Liouville quantum gravity metric, Trans. Amer. Math. Soc. 375 (2022), no. 12, 8297-8324. MathSciNet: MR4504639 · Zbl 1501.60007
[21] Nina Holden and Xin Sun, Convergence of uniform triangulations under the Cardy embedding, Acta Math. 230 (2023), no. 1, 93-203. MathSciNet: MR4567714 · Zbl 1514.60016
[22] Jean-Pierre Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (1985), no. 2, 105-150. MathSciNet: MR829798 · Zbl 0596.60041
[23] Jean-François Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab. 41 (2013), no. 4, 2880-2960. MathSciNet: MR3112934 · Zbl 1282.60014
[24] Jouni Luukkainen and Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), no. 2, 531-534. MathSciNet: MR1443161 · Zbl 0897.28007
[25] Grégory Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math. 210 (2013), no. 2, 319-401. MathSciNet: MR3070569 · Zbl 1278.60124
[26] Jason Miller and Scott Sheffield, Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields 164 (2016), no. 3-4, 553-705. MathSciNet: MR3477777 · Zbl 1336.60162
[27] Jason Miller and Scott Sheffield, Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Related Fields 169 (2017), no. 3-4, 729-869. MathSciNet: MR3719057 · Zbl 1378.60108
[28] Jason Miller and Scott Sheffield, Liouville quantum gravity and the Brownian map I: the \(\operatorname{QLE}(8 / 3, 0) metric \), Invent. Math. 219 (2020), no. 1, 75-152. MathSciNet: MR4050102 · Zbl 1437.83042
[29] Jason Miller and Scott Sheffield, Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding, Ann. Probab. 49 (2021), no. 6, 2732-2829. MathSciNet: MR4348679 · Zbl 1478.60045
[30] Jason Miller and Scott Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, Probab. Theory Related Fields 179 (2021), no. 3-4, 1183-1211. MathSciNet: MR4242633 · Zbl 1478.60044
[31] Assaf Naor and Ofer Neiman, Assouad’s theorem with dimension independent of the snowflaking, Rev. Mat. Iberoam. 28 (2012), no. 4, 1123-1142. MathSciNet: MR2990137 · Zbl 1260.46016
[32] Joshua Pfeffer, Weak Liouville quantum gravity metrics with matter central charge \(\mathbf{c} \in(- \operatorname{\infty}, 25)\), Probab. Math. Phys. 5 (2024), no. 3, 545-608. MathSciNet: MR4765494 · Zbl 07898592
[33] Scott Sheffield, Gaussian free fields for mathematicians, Probab. Theory Related Fields 139 (2007), no. 3-4, 521-541. MathSciNet: MR2322706 · Zbl 1132.60072
[34] Sascha Troscheit, On quasisymmetric embeddings of the Brownian map and continuum trees, Probab. Theory Related Fields 179 (2021), no. 3-4, 1023-1046. MathSciNet: MR4242630 · Zbl 1478.60046
[35] Jussi Väisälä, Quasisymmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), no. 1, 191-204. MathSciNet: MR597876 · Zbl 0456.30018
[36] A. L. Vol’berg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 666-675. MathSciNet: MR903629 · Zbl 0649.42010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.