×

On a conjecture for representations of integers as sums of squares and double shuffle relations. (English) Zbl 1392.11021

Summary: In this paper, we prove a conjecture of H. H. Chan and K. S. Chua [Ramanujan J. 7, No. 1-3, 79–89 (2003; Zbl 1031.11022)] for the number of representations of integers as sums of \(8s\) integral squares. The proof uses a theorem of Ö. Imamoḡlu and W. Kohnen [Math. Ann. 333, No. 4, 815–829 (2005; Zbl 1081.11026)], and the double shuffle relations satisfied by the double Eisenstein series of level 2.

MSC:

11D85 Representation problems
11M32 Multiple Dirichlet series and zeta functions and multizeta values
11E25 Sums of squares and representations by other particular quadratic forms
11F27 Theta series; Weil representation; theta correspondences

References:

[1] Chan, H.H., Chua, K.S.: Representations of integers as sums of 32 squares. Ramanujan J. 7, 79-89 (2003) · Zbl 1031.11022 · doi:10.1023/A:1026226608128
[2] Chan, H.H., Krattenthaler, C.: Recent progress in the study of representations of integers as sums of squares. Bull. Lond. Math. Soc. 37(6), 818-826 (2005) · Zbl 1092.11019 · doi:10.1112/S0024609305004820
[3] Dickson, L.E.: History of the Theory of Numbers. Vol. II: Diophantine Analysis. Chelsea, New York (1966) · Zbl 0958.11500
[4] Fukuhara, S., Yang, Y.: A basis for Sk(Γ \(0(4))S_k(\varGamma_0(4))\) and representations of integers as sums of squares. Ramanujan J. 28, 25-43 (2012) · Zbl 1280.11021 · doi:10.1007/s11139-011-9341-y
[5] Gangl, H.; Kaneko, M.; Zagier, D., Double zeta values and modular forms. Automorphic forms and zeta functions, 71-106 (2006), Singapore · Zbl 1122.11057
[6] Grosswald, E.: Representations of Integers as Sums of Squares. Springer, New York (1985) · Zbl 0574.10045 · doi:10.1007/978-1-4613-8566-0
[7] Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142(2), 307-338 (2006) · Zbl 1186.11053 · doi:10.1112/S0010437X0500182X
[8] Imamoḡlu, Ő., Kohnen, W.: Representations of integers as sums of an even number of squares. Math. Ann. 333(4), 815-829 (2005) · Zbl 1081.11026 · doi:10.1007/s00208-005-0699-2
[9] Kac, V. G.; Wakimoto, M.; Brylinski, J.-L. (ed.); Brylinski, R. (ed.); Guillemin, V. (ed.); Kac, V. (ed.), Integrable highest weight modules over affine superalgebras and number theory, No. 123, 415-456 (1994) · Zbl 0854.17028 · doi:10.1007/978-1-4612-0261-5_15
[10] Kaneko, M., Tasaka, K.: Double zeta values, double Eisenstein series, and modular forms of level 2. Math. Ann. (2013, to appear) · Zbl 1327.11059
[11] Kilger, K.: Die Vermutung von Chan-Chua und die Kombinatorik von Windungselementen. Doctoral Thesis, University of Heiderberg (2010, unpublished) · Zbl 1211.11055
[12] Milne, S.: New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Natl. Acad. Sci. USA 93(26), 15004-15008 (1996) (electronic) · Zbl 1125.11346 · doi:10.1073/pnas.93.26.15004
[13] Milne, S.: New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Formal Power Series and Algebraic Combinatorics, conference proceedings 3(3), 403-417 (1997) · Zbl 1081.11026
[14] Milne, S.: Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6, 7-149 (2002) · Zbl 1125.11315 · doi:10.1023/A:1014865816981
[15] Ono, K.: Representations of integers as sums of squares. J. Number Theory 95, 253-258 (2002) · Zbl 1125.11321
[16] Rosengren, H.: Sums of squares from elliptic Pfaffians. Int. J. Number Theory 4(6), 873-902 (2008) · Zbl 1218.11040 · doi:10.1142/S1793042108001778
[17] Rosengren, H.: Sums of triangular numbers from the Frobenius determinant. Adv. Math. 208(2), 935-961 (2007) · Zbl 1133.11031 · doi:10.1016/j.aim.2006.04.006
[18] Zagier, D.: A proof of the Kac-Wakimoto affine denominator formula for the strange series. Math. Res. Lett. 7, 597-604 (2000) · Zbl 1125.11319 · doi:10.4310/MRL.2000.v7.n5.a5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.