×

The \(\ell_p\)-function on finite Boolean lattices. (English) Zbl 1345.05013

Summary: Let \(p\) be an integer such that \(p\geq1\). A \(p\)-value of a sequence \(\pi=(x_1,x_2,\dots,x_k)\) of elements of a finite metric space \((X,d)\) is an element \(x\in X\) for which \(\sum^k_{i=1}=d^p(x,x_i)\) is minimum. The \(p\) function whose domain is the set of all finite sequences on \(X\), and defined by \(\ell_p(\pi)=\{x:x \text{ is a }p\)-value of

MSC:

05C05 Trees
05C12 Distance in graphs
68R10 Graph theory (including graph drawing) in computer science
90B80 Discrete location and assignment
94C15 Applications of graph theory to circuits and networks
06B99 Lattices
03G10 Logical aspects of lattices and related structures
Full Text: DOI

References:

[1] 1. K. J. Arrow, A. K. Sen and K. Suzumura (eds.), Handbook of Social Choice and Welfare, Vol. 1 (North Holland, Amsterdam, 2002). · Zbl 1307.91009
[2] 2. K. J. Arrow, A. K. Sen and K. Suzumura (eds.), Handbook of Social Choice and Welfare, Vol. 2 (North Holland, Amsterdam, 2005).
[3] 3. J. P. Barthélemy and M. F. Janowitz, A formal theory of consensus, SIAM J. Discrete Math.4 (1991) 305-322. genRefLink(16, ’S1793830916500440BIB003’, ’10.1137 · Zbl 0734.90008
[4] 4. J. P. Barthélemy and F. R. McMorris, The median procedure for n-trees, J. Classification3 (1986) 329-334. genRefLink(16, ’S1793830916500440BIB004’, ’10.1007
[5] 5. J. P. Barthélemy and B. Monjardet, The median procedure in cluster analysis and social choice theory, Math. Soc. Sci.1 (1981) 235-268. genRefLink(16, ’S1793830916500440BIB005’, ’10.1016
[6] 6. J. E. Biagi, Facility location and the mean function, M.A. thesis, University of Louisville (2000).
[7] 7. G. Birkhoff, Lattice Theory (American Mathematical Society, 1961).
[8] 8. L. M. Blumenthal and K. Menger, Studies in Geometry (W. H. Freeman, Providence, RI, 1970).
[9] 9. B. A. Davey, Introduction to Lattices and Order (Cambridge University Press, 2005).
[10] 10. W. H. E. Day and F. R. McMorris, Axiomatic Consensus Theory in Group Choice and Biomathematics, Frontiers in Applied (SIAM, Philadelphia, 2003). genRefLink(16, ’S1793830916500440BIB010’, ’10.1137 · Zbl 1031.92001
[11] 11. D. P. Foster and R. Vohra, An axiomatic characterization of a class of location in tree networks, Oper. Res.46 (1998) 347-354. genRefLink(16, ’S1793830916500440BIB011’, ’10.1287 · Zbl 0979.90118
[12] 12. C. García-Martínez and O. Ortega, The median function on Boolean lattices, Discrete Math. Algorithms Appl.6(4) (2014) 21 pp. · Zbl 1303.06007
[13] 13. G. Grätzer, Lattice Theory (W. H. Freeman, 1971).
[14] 14. R. Holzman, An axiomatic approach to location on networks, Math. Oper. Res.15 (1990) 553-563. genRefLink(16, ’S1793830916500440BIB014’, ’10.1287 · Zbl 0715.90070
[15] 15. G. Kriston and O. Ortega, The median function on trees, Discrete Math. Algorithms Appl.5(4) (2013) 14 pp. · Zbl 1280.05021
[16] 16. S. Lipschutz and M. L. Lipson, Theory and Problems of Discrete Mathematics, Schaum’s Outline Series (McGraw-Hill, 1997).
[17] 17. F. R. McMorris, H. M. Mulder and O. Ortega, Axiomatic characterization of the mean function on trees, Discrete Math. Alg. Appl.2 (2010) 313-329. [Abstract] · Zbl 1226.05087
[18] 18. F. R. McMorris, H. M. Mulder and O. Ortega, The p-function on trees, Networks60 (2012) 94-102. · Zbl 1251.90249
[19] 19. F. R. McMorris, H. M. Mulder and R. C. Powers, The median function on distributive semilattices, Discrete Appl. Math.127 (2003) 319-324. genRefLink(16, ’S1793830916500440BIB019’, ’10.1016 · Zbl 1026.06007
[20] 20. F. R. McMorris, H. M. Mulder and F. S. Roberts, The median procedure on median graphs, Discrete Appl. Math.84 (1998) 165-181. genRefLink(16, ’S1793830916500440BIB020’, ’10.1016 · Zbl 0906.05023
[21] 21. F. R. McMorris, H. M. Mulder and R. V. Vobra, Axiomatic characterization of location functions, in Advances in Interdisciplinary Applied Discrete Mathematics, eds. H. Kaul and H. Mulder, Interdisciplinary Mathematical Sciences, Vol. 11 (World Scientific, Singapore, 2010), pp. 71-91. [Abstract]
[22] 22. F. R. McMorris, F. S. Roberts and C. Wang, The center function on trees, Networks38 (2001) 84-87. genRefLink(16, ’S1793830916500440BIB022’, ’10.1002 · Zbl 0990.90063
[23] 23. P. B. Mirchandani and R. L. Francis (eds.), Discrete Location Theory (Wiley, New York, 1990). · Zbl 0718.00021
[24] 24. H. M. Mulder, The Interval Function of a Graph, Mathematical Centre Tracts, Vol. 132 (Mathematisch Centrum, Amsterdam, 1980). · Zbl 0446.05039
[25] 25. H. M. Mulder and B. A. Novick, An axiomatization of the median procedure on the n-cube, Discrete Appl. Math.159 (2011) 939-944. genRefLink(16, ’S1793830916500440BIB025’, ’10.1016 · Zbl 1222.05245
[26] 26. H. M. Mulder and B. A. Novick, A tight axiomatization of the median procedure on median graphs, Discrete Appl. Math.161 (2013) 223-226. genRefLink(16, ’S1793830916500440BIB026’, ’10.1016 · Zbl 1262.05041
[27] 27. H. M. Mulder, K. B. Reid and M. Pelsmajer, Axiomatization of the center function on trees, Austral. J. Combin.41 (2008) 223-226. · Zbl 1145.05304
[28] 28. O. Ortega, Consensus and location: The mean function, Ph.D. Dissertation, Illinois Institute of Technology (2008).
[29] 29. G. Szāsz, Introduction to Lattice Theory (Academic Press, New York, 1963). · Zbl 0101.26901
[30] 30. R. Vohra, An axiomatic characterization of some location in trees, European J. Oper. Res.90 (1996) 78-84. genRefLink(16, ’S1793830916500440BIB030’, ’10.1016 · Zbl 0914.90182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.