×

Difference finite element method for the 3D steady Stokes equations. (English) Zbl 1482.76078

Summary: In this paper, a difference finite element (DFE) method is presented for the 3D steady Stokes equations. This new method consists of transmitting the finite element solution \(( u_h, p_h)\) of the 3D steady Stokes equations in the direction of \((x, y, z)\) into a series of the finite element solution \(( u_h^k, p_h^k)\) of the 2D steady Stokes equations. Here the 2D steady Stokes equations are solved by the finite element space pair \(( P_1^b, P_1^b, P_1) \times P_1\), where the 2D finite element pair \(( P_1^b, P_1^b) \times P_1\) satisfies the discrete inf-sup condition in a 2D domain \(\omega \). Here we design the weak formulation of the DFE method based on the 3D finite element pair \((( P_1^b, P_1^b, P_1) \times P_1) \times( P_1 \times P_0)\) under the quasi-uniform mesh condition, prove that the 3D finite element pair satisfies the discrete inf-sup condition in a 3D domain \(\Omega\) and provide the existence, uniqueness and stability of the DFE solution \(( u_h, p_h) = ( \sum_{k = 0}^{l_3} u_h^k \phi_k(z), \sum_{k = 1}^{l_3} p_h^k \psi_k(z))\) and deduce the first order convergence of the DFE solution \(( u_h, p_h)\) with respect to the exact solution \((u, p)\) of the 3D steady Stokes equations. Finally, some numerical tests are presented to show the accuracy and efficiency for the proposed method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

FreeFem++
Full Text: DOI

References:

[1] Bao, F.; Mu, L.; Wang, J., A fully computable a posteriori error estimate for the Stokes equations on polytopal meshes, SIAM J. Numer. Anal., 57, 1, 458-477 (2019) · Zbl 1502.65176
[2] Bochev, P. B.; Dohrmann, C. R.; Gunzburger, M. D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 1, 82-101 (2006) · Zbl 1145.76015
[3] Chen, H.; Li, K.; Wang, S., A dimension split method for the incompressible Navier-Stokes equations in three dimensions, Int. J. Numer. Methods Fluids, 73, 5, 409-435 (2013) · Zbl 1455.76035
[4] Chen, H.; Li, K.; Chu, Y.; Chen, Z.; Yang, Y., A dimension splitting and characteristic projection method for three-dimensional incompressible flow, Discrete Contin. Dyn. Syst., Ser. B, 24, 1, 127-147 (2019) · Zbl 1404.76072
[5] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics (2005), Oxford University Press: Oxford University Press Oxford · Zbl 1083.76001
[6] Gatica, G. N.; Munar, M.; Sequeira, F. A., A mixed virtual element method for the Navier-Stokes equations, Math. Models Methods Appl. Sci., 28, 14, 2719-2762 (2018) · Zbl 1411.76062
[7] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.65077
[8] Glowinski, R., Finite element methods for incompressible viscous flow, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. IX, Numerical Methods for Fluids (Part 3) (2003), Elsevier Science Publisher: Elsevier Science Publisher Amsterdam) · Zbl 1040.76001
[9] He, Y.; Li, J., Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 198, 1351-1359 (2009) · Zbl 1227.76031
[10] He, Y.; Li, K., Two-level stabilized finite element methods for the steady Navier-Stokes equations, Computing, 74, 337-351 (2005) · Zbl 1099.65111
[11] He, Y.; Wang, A., A simplified two-level method for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 197, 1568-1576 (2008) · Zbl 1194.76120
[12] He, Y.; Wang, A.; Mei, L., Stabilized finite element methods for the stationary Navier-Stokes equations, J. Eng. Math., 51, 367-380 (2005) · Zbl 1069.76031
[13] He, Y.; Wang, A.; Chen, Z.; Li, K., An optimal nonlinear Galerkin method with mixed finite elements for the steady Navier-Stokes equations, Numer. Methods Partial Differ. Equ., 19, 762-775 (2003) · Zbl 1134.76385
[14] He, R.; Feng, X.; Chen, Z., \( H^1\)-superconvergence of a difference finite element method based on the \(P_1- P_1\)-conforming element on non-uniform meshes for the 3D Poisson equation, Math. Comput., 87, 1659-1688 (2018) · Zbl 1471.65171
[15] Hecht, F., New development in freefem++, J. Numer. Math., 20, 251-265 (2012) · Zbl 1266.68090
[16] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19, 275-311 (1982) · Zbl 0487.76035
[17] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal., 23, 750-777 (1986) · Zbl 0611.76036
[18] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem, III. Smoothing property and higher order estimates for spatial discretization, SIAM J. Numer. Anal., 25, 489-512 (1988) · Zbl 0646.76036
[19] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem, IV: Error analysis for second order time discretization, SIAM J. Numer. Anal., 27, 2, 353-384 (1990) · Zbl 0694.76014
[20] Huang, P.; Feng, X.; He, Y., Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations, Appl. Math. Model., 37, 728-741 (2013) · Zbl 1351.76060
[21] Huang, P.; Feng, X.; Liu, D., Two-level stabilized method based on three corrections for the stationary Navier-Stokes equations, Appl. Numer. Math., 62, 8, 988-1001 (2012) · Zbl 1302.76103
[22] Irisarri, D.; Hauke, G., Stabilized virtual element methods for the unsteady incompressible Navier-Stokes equations, Calcolo, 56, 4, 1-21 (2019) · Zbl 1425.76138
[23] Kaya, S.; Layton, W.; Rivière, B., Subgrid stabilized defect correction methods for the Navier-Stokes equations, SIAM J. Numer. Anal., 44, 4, 1639-1654 (2006) · Zbl 1124.76029
[24] Layton, W., A two level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26, 33-38 (1993) · Zbl 0773.76042
[25] Li, J., Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations, Appl. Math. Comput., 182, 1470-1481 (2006) · Zbl 1151.76528
[26] Liu, X.; Chen, Z., The nonconforming virtual element method for the Navier-Stokes equations, Adv. Comput. Math., 45, 1, 51-74 (2019) · Zbl 1419.65117
[27] Mu, L., Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J. Sci. Comput., 42, 3, B608-B629 (2020) · Zbl 1440.65224
[28] Mu, L.; Ye, X.; Zhang, S., A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh, SIAM J. Sci. Comput., 43, 4, A2614-A2637 (2021) · Zbl 1486.65259
[29] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1997), Spring-Verlag: Spring-Verlag Berlin
[30] Song, L.; Su, H.; Feng, X., Recovery-based error estimator for stabilized finite element method for the stationary Navier-Stokes problem, SIAM J. Sci. Comput., 38, 6, A3758-A3772 (2016) · Zbl 1457.65217
[31] Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam, New York and Oxford · Zbl 0568.35002
[32] Xu, H.; He, Y., Some iterative finite element methods for steady Navier-Stokes equations with different viscosities, J. Comput. Phys., 232, 136-152 (2013) · Zbl 1291.76211
[33] Zhang, Y.; He, Y., A two-level finite element method for the stationary Navier-Stokes equations based on a stabilized local projection, Numer. Methods Partial Differ. Equ., 27, 460-477 (2011) · Zbl 1428.35318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.