×

Mixtures of Berkson and classical covariate measurement error in the linear mixed model: bias analysis and application to a study on ultrafine particles. (English) Zbl 1441.62560

Summary: The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error.

MSC:

62P12 Applications of statistics to environmental and related topics
62H11 Directional data; spatial statistics
62J12 Generalized linear models (logistic models)

References:

[1] Alexeeff, S., Carroll, R. J., & Coull, B. (2016). Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures. Biostatistcs, 17, 377-389.
[2] Bergen, S., Sheppard, L., Kaufman, J. D., & Szpiro, A. A. (2016). Multipollutant measurement error in air pollution epidemiology studies arising from predicting exposures with penalized regression splines. Journal of the Royal Statistical Society: Series C Applied Statistics, 65, 731-753.
[3] Buzas, J. S., Stefanski, L. A., & Tosteson, T. D. (2005). Measurement error. In W.Ahrens (ed.) & I.Pigeot (ed.) (Eds.), Handbook of epidemiology (pp. 729-765). Berlin, Heidelberg, DE: Springer.
[4] Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement error in nonlinear models —A modern perspective (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1119.62063
[5] Carroll, R. J., Delaigle, A., & Hall, P. (2007). Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors: Non‐parametric regression estimation. Journal of the Royal Statistical Society: Series B Statistical Methodology, 69, 859-878. · Zbl 07555378
[6] Deffner, V., Küchenhoff, H., Maier, V., Pitz, M., Cyrys, J., Breitner, S., … Peters, A. (2016). Personal exposure to ultrafine particles: Two‐level statistical modeling of background exposure and time‐activity patterns during three seasons. Journal of Exposure Science and Environmental Epidemiology, 26, 17-25.
[7] Diggle, P. J., Heagerty, P., Liang, K.‐Y., & Zeger, S. L. (2002). Analysis of longitudinal data. New York, NY: Oxford University Press Inc.
[8] Dominici, F., Sheppard, L., & Clyde, M. (2003). Health effects of air pollution: A statistical review. International Statistical Review, 71, 243-276. · Zbl 1114.62358
[9] Fuller, W. A. (1987). Measurement error models. New York, NY: Wiley. · Zbl 0800.62413
[10] Gu, J., Kraus, U., Schneider, A., Hampel, R., Pitz, M., Breitner, S., … Cyrys, J. (2015). Personal day‐time exposure to ultrafine particles in different microenvironments. International Journal of Hygiene and Environmental Health, 218, 188-195.
[11] Hampel, R., Breitner, S., Schneider, A., Zareba, W., Kraus, U., Cyrys, J., … Peters, A. (2012a). Acute air pollution effects on heart rate variability are modified by SNPs involved in cardiac rhythm in individuals with diabetes or impaired glucose tolerance. Environmental Research, 112, 177-185.
[12] Hampel, R., Breitner, S., Zareba, W., Kraus, U., Pitz, M., Geruschkat, U., … Schneider, A. (2012b). Immediate ozone effects on heart rate and repolarisation parameters in potentially susceptible individuals. Occupational and Environmental Medicine, 69, 428-436.
[13] Lütkepohl, H. (1984). Linear transformations of vector ARMA processes. Journal of Econometrics, 26, 283-293. · Zbl 0555.62072
[14] Mallick, B., Hoffman, F. O., & Carroll, R. J. (2002). Semiparametric regression modeling with mixtures of Berkson and classical error, with application to fallout from the Nevada Test Site. Biometrics, 58, 13-20. · Zbl 1209.62078
[15] Muff, S., & Keller, L. F. (2015). Reverse attenuation in interaction terms due to covariate measurement error. Biometrical Journal, 57, 1068-1083. · Zbl 1386.62023
[16] Peters, A., Hampel, R., Cyrys, J., Breitner, S., Geruschkat, U., Kraus, U., … Schneider, A. (2015). Elevated particle number concentrations induce immediate changes in heart rate variability: A panel study in individuals with impaired glucose metabolism or diabetes. Particle and Fibre Toxicology, 12, 7.
[17] Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S‐plus. New York, NY: Springer. · Zbl 0953.62065
[18] Rosner, B., Willett, W. C., & Spiegelman, D. (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within‐person measurement error. Statistics in Medicine, 8, 1051-1069.
[19] Rückerl, R., Hampel, R., Breitner, S., Cyrys, J., Kraus, U., Carter, J., … Schneider, A. (2014). Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environment International, 70, 32-49.
[20] Schennach, S. (2013). Regressions with Berkson errors in covariates—A non-parametric approach. The Annals of Statistics, 41, 1642-1668. · Zbl 1292.62061
[21] Schwartz, J., & Coull, B. A. (2003). Control for confounding in the presence of measurement error in hierarchical models. Biostatistics, 4, 539-553. · Zbl 1197.62155
[22] Sheppard, L., Burnett, R. T., Szpiro, A. A., Kim, S. Y., Jerrett, M., Pope, C. A., & Brunekreef, B. (2011). Confounding and exposure measurement error in air pollution epidemiology. Air Quality, Atmosphere & Health, 5, 1-14.
[23] Spiegelman, D., Rosner, B., & Logan, R. (2000). Estimation and inference for logistic regression with covariate misclassification and measurement error in main study/validation study designs. Journal of the American Statistical Association, 95, 51-61.
[24] Thoresen, M., & Laake, P. (2000). A simulation study of measurement error correction methods in logistic regression. Biometrics, 56, 868-872. · Zbl 1060.62540
[25] Tosteson, T. D., Buonaccorsi, J. P., & Demidenko, E. (1998). Covariate measurement error and the estimation of random effect parameters in a mixed model for longitudinal data. Statistics in Medicine, 17, 1959-1971.
[26] Wang, C. Y. (2000). Flexible regression calibration for covariate measurement error with longitudinal surrogate variables. Statistica Sinica, 10, 905-921. · Zbl 0952.62063
[27] Wang, N., Carroll, R. J., & Liang, K.‐Y. (1996). Estimation in measurement error models with correlated replicates. Biometrics, 52, 401-411. · Zbl 0875.62333
[28] Wang, N., Lin, X., Gutierrez, R. G., & Carroll, R. J. (1998). Bias analysis and SIMEX approach in generalized linear mixed measurement error models. Journal of the American Statistical Association, 93, 249-261. · Zbl 0906.62069
[29] Yin, Z., Gao, W., Tang, M.‐L., & Tian, G.‐L. (2013). Estimation of nonparametric regression models with a mixture of Berkson and classical errors. Statistics & Probability Letters, 83, 1151-1162. · Zbl 1489.62132
[30] Zeger, S. L., Thomas, D., Dominici, F., Samet, J. M., Schwartz, J., Dockery, D., & Cohen, A. (2000). Exposure measurement error in time‐series studies of air pollution: Concepts and consequences. Environmental Health Perspectives, 108, 419-426.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.