×

Learning physics-based models from data: perspectives from inverse problems and model reduction. (English) Zbl 1520.65043

Summary: This article addresses the inference of physics models from data, from the perspectives of inverse problems and model reduction. These fields develop formulations that integrate data into physics-based models while exploiting the fact that many mathematical models of natural and engineered systems exhibit an intrinsically low-dimensional solution manifold. In inverse problems, we seek to infer uncertain components of the inputs from observations of the outputs, while in model reduction we seek low-dimensional models that explicitly capture the salient features of the input-output map through approximation in a low-dimensional subspace. In both cases, the result is a predictive model that reflects data-driven learning yet deeply embeds the underlying physics, and thus can be used for design, control and decision-making, often with quantified uncertainties. We highlight recent developments in scalable and efficient algorithms for inverse problems and model reduction governed by large-scale models in the form of partial differential equations. Several illustrative applications to large-scale complex problems across different domains of science and engineering are provided.

MSC:

65K10 Numerical optimization and variational techniques
65L09 Numerical solution of inverse problems involving ordinary differential equations
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
62F15 Bayesian inference
86A04 General questions in geophysics
Full Text: DOI

References:

[1] Adavani, S. S. and Biros, G. (2008), Multigrid algorithms for inverse problems with linear parabolic PDE constraints, SIAM J. Sci. Comput.31, 369-397. · Zbl 1185.65174
[2] Adavani, S. S. and Biros, G. (2010), Fast algorithms for source identification problems with elliptic PDE constraints, SIAM J. Imag. Sci.3, 791-808. · Zbl 1201.65201
[3] Akçelik, V., Bielak, J., Biros, G., Epanomeritakis, I., Fernandez, A., Ghattas, O., Kim, E. J., Lopez, J., O’Hallaron, D. R., Tu, T. and Urbanic, J. (2003a), High resolution forward and inverse earthquake modeling on terascale computers, in SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, IEEE, p. 52.
[4] Akçelik, V., Biros, G. and Ghattas, O. (2002), Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation, in SC ’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, IEEE, pp. 41-41.
[5] Akçelik, V., Biros, G., Drăgănescu, A., Ghattas, O., Hill, J. and Bloemen Waanders, B. Van (2005), Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants, in SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, IEEE, p. 43.
[6] Akçelik, V., Biros, G., Ghattas, O., Hill, J., Keyes, D. and Van Bloemen Waanders, B. (2006), Parallel PDE-constrained optimization, in Parallel Processing for Scientific Computing (Heroux, M., Raghaven, P. and Simon, H., eds), Society for Industrial and Applied Mathematics (SIAM).
[7] Akçelik, V., Biros, G., Ghattas, O., Long, K. R. and Van Bloemen Waanders, B. (2003b), A variational finite element method for source inversion for convective-diffusive transport, Finite Elem. Anal. Des.39, 683-705.
[8] Alexanderian, A. (2020), Optimal experimental design for Bayesian inverse problems governed by PDEs: A review. Available at arXiv:2005.12998. · Zbl 1461.62129
[9] Alexanderian, A. and Saibaba, A. K. (2018), Efficient D-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems, SIAM J. Sci. Comput.40, A2956-A2985. · Zbl 1401.62123
[10] Alexanderian, A., Gloor, P. J. and Ghattas, O. (2015), On Bayesian A- and D-optimal experimental designs in infinite dimensions, Bayesian Anal.11, 671-695. · Zbl 1359.62315
[11] Alexanderian, A., Petra, N., Stadler, G. and Ghattas, O. (2014), A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized l_0-sparsification, SIAM J. Sci. Comput.36, A2122-A2148. · Zbl 1314.62163
[12] Alexanderian, A., Petra, N., Stadler, G. and Ghattas, O. (2016), A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems, SIAM J. Sci. Comput.38, A243-A272. · Zbl 06536072
[13] Alexanderian, A., Petra, N., Stadler, G. and Ghattas, O. (2017), Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations, SIAM/ASA J. Uncertain. Quantif.5, 1166-1192. · Zbl 1391.93289
[14] Alexanderian, A., Petra, N., Stadler, G. and Sunseri, I. (2021), Optimal design of large-scale Bayesian linear inverse problems under reducible model uncertainty: Good to know what you don’t know, SIAM/ASA J. Uncertain. Quantif.9, 163-184. · Zbl 1460.62120
[15] Alger, N., Rao, V., Meyers, A., Bui-Thanh, T. and Ghattas, O. (2019), Scalable matrix-free adaptive product-convolution approximation for locally translation-invariant operators, SIAM J. Sci. Comput.41, A2296-A2328. · Zbl 1461.41001
[16] Alger, N., Villa, U., Bui-Thanh, T. and Ghattas, O. (2017), A data scalable augmented Lagrangian KKT preconditioner for large scale inverse problems, SIAM J. Sci. Comput.39, A2365-A2393. · Zbl 1422.65090
[17] Alghamdi, A., Hesse, M., Chen, J. and Ghattas, O. (2020), Bayesian poroelastic aquifer characterization from InSAR surface deformation data, I: Maximum a posteriori estimate, Water Resour. Water Resour. Res.56, e2020WR027391.
[18] Alghamdi, A., Hesse, M., Chen, J., Villa, U. and Ghattas, O. (2021), Bayesian poroelastic aquifer characterization from InSAR surface deformation data, II: Quantifying the uncertainty, Water Resour. Res. Submitted.
[19] Allgower, E. L., Böhmer, K., Potra, F. A. and Rheinboldt, W. C. (1986), A mesh-independence principle for operator equations and their discretizations, SIAM J. Numer. Anal.23, 160- 169. · Zbl 0591.65043
[20] Ambartsumyan, I., Boukaram, W., Bui-Thanh, T., Ghattas, O., Keyes, D., Stadler, G., Turkiyyah, G. and Zampini, S. (2020), Hierarchical matrix approximations of Hessians arising in inverse problems governed by PDEs, SIAM J. Sci. Comput.42, A3397-A3426. · Zbl 1453.65289
[21] Amsallem, D. and Farhat, C. (2008), Interpolation method for the adaptation of reduced-order models to parameter changes and its application to aeroelasticity, AIAA J.46, 1803-1813.
[22] Amsallem, D. and Farhat, C. (2011), An online method for interpolating linear parametric reduced-order models, SIAM J. Sci. Comput.33, 2169-2198. · Zbl 1269.65059
[23] Amsallem, D., Cortial, J., Carlberg, K. and Farhat, C. (2009), A method for interpolating on manifolds structural dynamics reduced-order models, Internat. J. Numer. Methods Engng80, 1241-1258. · Zbl 1176.74077
[24] Amsallem, D., Zahr, M. J. and Farhat, C. (2012), Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods Engng92, 891-916. · Zbl 1352.65212
[25] Antil, H., Kouri, D. P., Lacasse, M. and Ridzal, D., eds (2018), Frontiers in PDE-Constrained Optimization, Springer. · Zbl 1402.49004
[26] Antoulas, A. C., Beattie, C. A. and Gugercin, S. (2020), Interpolatory Methods for Model Reduction, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1319.93016
[27] Arian, E. and Ta’Asan, S. (1999), Analysis of the Hessian for aerodynamic optimization: Inviscid flow, Comput. Fluids28, 853-877. · Zbl 0969.76015
[28] Arian, E., Fahl, M. and Sachs, E. (2002), Trust-region proper orthogonal decomposition models by optimization methods, in Proceedings of the 41st IEEE Conference on Decision and Control, pp. 3300-3305.
[29] Arridge, S., Maass, P., Öktem, O. and Schönlieb, C.-B. (2019), Solving inverse problems using data-driven models, in Acta Numerica, Vol. 28, Cambridge University Press, pp. 1-174. · Zbl 1429.65116
[30] Asch, M., Bocquet, M. and Nodet, M. (2016), Data Assimilation: Methods, Algorithms, and Applications, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1361.93001
[31] Ascher, U. M. and Haber, E. (2003), A multigrid method for distributed parameter estimation problems, Electron. Trans. Numer. Anal.15, 1-17. · Zbl 1031.65108
[32] Aster, R. C., Borchers, B. and Thurbur, C. H. (2013), Parameter Estimation and Inverse Problems, Academic Press. · Zbl 1273.35306
[33] Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008), Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Control53, 2237- 2251. · Zbl 1367.93110
[34] Atkinson, K. E. (1997), The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press. · Zbl 0899.65077
[35] Attia, A., Alexanderian, A. and Saibaba, A. K. (2018), Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems, Inverse Problems34, 095009. · Zbl 1475.65037
[36] Axelsson, O. and Karatson, J. (2007), Mesh independent superlinear PCG rates via compact-equivalent operators, SIAM J. Numer. Anal.45, 1495-1516. · Zbl 1151.65081
[37] Ba, Y., De Wiljes, J., Oliver, D. S. and Reich, S. (2021), Randomised maximum likelihood based posterior sampling. Available at arXiv:2101.03612. · Zbl 1484.86017
[38] Babaniyi, O., Nicholson, R., Villa, U. and Petra, N. (2021), Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty, Cryosphere15, 1731-1750.
[39] Narayanan, V. A. Badri and Zabaras, N. (2004), Stochastic inverse heat conduction using a spectral approach, Internat. J. Numer. Methods Engng60, 1569-1593. · Zbl 1098.80008
[40] Balas, E. (2005), Projection, lifting and extended formulation in integer and combinatorial optimization, Ann. Oper. Res.140, 125. · Zbl 1091.90041
[41] Banks, H. T. and Kunisch, K. (1989), Estimation Techniques for Distributed Parameter Systems, Systems & Control: Foundations & Applications, Birkhäuser. · Zbl 0695.93020
[42] Bardsley, J. M. (2018), Computational Uncertainty Quantification for Inverse Problems, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1435.60001
[43] Bardsley, J. M., Cui, T., Marzouk, Y. M. and Wang, Z. (2020), Scalable optimization-based sampling on function space, SIAM J. Sci. Comput.42, A1317-A1347. · Zbl 1471.62023
[44] Bardsley, J., Solonen, A., Haario, H. and Laine, M. (2014), Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems, SIAM J. Sci. Comput.36, A1895-A1910. · Zbl 1303.65003
[45] Barker, A., Rees, T. and Stoll, M. (2016), A fast solver for an H_1 regularized PDE-constrained optimization problem, Commun. Comput. Phys.19, 143-167. · Zbl 1373.49028
[46] Barrault, M., Maday, Y., Nguyen, N. C. and Patera, A. T. (2004), An ‘empirical interpola-tion’ method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. ParisI, 339-667. · Zbl 1061.65118
[47] Bashir, O., Willcox, K., Ghattas, O., Van Bloemen Waanders, B. and Hill, J. (2008), Hessian-based model reduction for large-scale systems with initial condition inputs, Internat. J. Numer. Methods Engng73, 844-868. · Zbl 1195.76311
[48] Battermann, A. and Heinkenschloss, M. (1998), Preconditioners for Karush-Kuhn-Tucker systems arising in the optimal control of distributed systems, in Optimal Control of Partial Differential Equations (Desch, W., Kappel, F. and Kunisch, K., eds), Vol. 126 of International Series of Numerical Mathematics, Birkhäuser, pp. 15-32. · Zbl 0909.49015
[49] Battermann, A. and Sachs, E. W. (2001), Block preconditioners for KKT systems in PDE-governed optimal control problems, in Fast Solution of Discretized Optimization Problems (Berlin, 2000) (Hoffmann, K.-H., Hoppe, R. H. W. and Schulz, V., eds), Vol. 138 of International Series of Numerical Mathematics, Birkhäuser, pp. 1-18. · Zbl 0992.49022
[50] Becker, R. and Vexler, B. (2007), Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math.106, 349-367. · Zbl 1133.65037
[51] Benner, P. and Breiten, T. (2015), Two-sided projection methods for nonlinear model order reduction, SIAM J. Sci. Comput.37, B239-B260. · Zbl 1312.93016
[52] Benner, P. and Stykel, T. (2017), Model order reduction for differential-algebraic equations: A survey, in Surveys in Differential-Algebraic Equations IV (Ilchmann, A. and Reis, T., eds), Springer, pp. 107-160. · Zbl 1402.93069
[53] Benner, P., Goyal, P., Kramer, B., Peherstorfer, B. and Willcox, K. (2020), Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms, Comput. Methods Appl. Mech. Engng372, 113433. · Zbl 1506.93015
[54] Benner, P., Gugercin, S. and Willcox, K. (2015), A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev.57, 483-531. · Zbl 1339.37089
[55] Benner, P., Onwunta, A. and Stoll, M. (2016), Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs, SIAM J. Matrix Anal. Appl.37, 491-518. · Zbl 1382.65074
[56] Benning, M. and Burger, M. (2018), Modern regularization methods for inverse problems, in Acta Numerica, Vol. 27, Cambridge University Press, pp. 1-111. · Zbl 1431.65080
[57] Benzi, M., Haber, E. and Taralli, L. (2011), A preconditioning technique for a class of PDE-constrained optimization problems, Adv. Comput. Math.35, 149-173. · Zbl 1293.65041
[58] Berkooz, G., Holmes, P. and Lumley, J. L. (1993), The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech.25, 539-575.
[59] Beskos, A., Girolami, M., Lan, S., Farrell, P. E. and Stuart, A. M. (2017), Geometric MCMC for infinite-dimensional inverse problems, J. Comput. Phys.335, 327-351. · Zbl 1375.35627
[60] Biegler, L. T., Ghattas, O., Heinkenschloss, M. and Van Bloemen Waanders, B., eds (2003), Large-Scale PDE-Constrained Optimization, Vol. 30 of Lecture Notes in Computational Science and Engineering, Springer. · Zbl 1021.00015
[61] Biegler, L. T., Ghattas, O., Heinkenschloss, M., Keyes, D. and Van Bloemen Waanders, B., eds (2007), Real-Time PDE-Constrained Optimization, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1117.49004
[62] Biros, G. and Doǧan, G. (2008), A multilevel algorithm for inverse problems with elliptic PDE constraints, Inverse Problems24, 034010. · Zbl 1187.35273
[63] Biros, G. and Ghattas, O. (1999), Parallel Newton-Krylov methods for PDE-constrained optimization, in SC ’99: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, IEEE, pp. 28-28. · Zbl 1091.65061
[64] Biros, G. and Ghattas, O. (2005a), Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, I: The Krylov-Schur solver, SIAM J. Sci. Comput.27, 687-713. · Zbl 1091.65061
[65] Biros, G. and Ghattas, O. (2005b), Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, II: The Lagrange-Newton solver and its application to optimal control of steady viscous flows, SIAM J. Sci. Comput.27, 714-739. · Zbl 1091.65062
[66] Borzì, A. (2003), Multigrid methods for parabolic distributed optimal control problems, J. Comput. Appl. Math.157, 365-382. · Zbl 1024.65047
[67] Borzì, A. and Griesse, R. (2005), Experiences with a space-time multigrid method for the optimal control of a chemical turbulence model, Internat. J. Numer. Methods Fluids47, 879-885. · Zbl 1134.65363
[68] Borzì, A. and Schulz, V. (2009), Multigrid methods for PDE optimization, SIAM Rev.51, 361-395. · Zbl 1167.35354
[69] Borzì, A. and Schulz, V. (2012), Computational Optimization of Systems Governed by Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1240.90001
[70] Braack, M. (2009), Optimal control in fluid mechanics by finite elements with symmetric stabilization, SIAM J. Control Optim.48, 672-687. · Zbl 1186.35134
[71] Bui-Thanh, T. and Ghattas, O. (2012a), Analysis of the Hessian for inverse scattering problems, I: Inverse shape scattering of acoustic waves, Inverse Problems28, 055001. · Zbl 1239.78006
[72] Bui-Thanh, T. and Ghattas, O. (2012b), Analysis of the Hessian for inverse scattering problems, II: Inverse medium scattering of acoustic waves, Inverse Problems28, 055002. · Zbl 1239.78006
[73] Bui-Thanh, T. and Ghattas, O. (2013), Analysis of the Hessian for inverse scattering problems, III: Inverse medium scattering of electromagnetic waves, Inverse Probl. Imaging7, 1139-1155. · Zbl 1292.78012
[74] Bui-Thanh, T. and Girolami, M. A. (2014), Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo, Inverse Problems30, 114014. · Zbl 1306.65269
[75] Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G. and Wilcox, L. C. (2012a), Extreme-scale UQ for Bayesian inverse problems governed by PDEs, in SC ’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, IEEE, pp. 1-11.
[76] Bui-Thanh, T., Damodaran, M. and Willcox, K. (2004), Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA J.42, 1505-1516.
[77] Bui-Thanh, T., Ghattas, O. and Higdon, D. (2012b), Adaptive Hessian-based nonstationary Gaussian process response surface method for probability density approximation with application to Bayesian solution of large-scale inverse problems, SIAM J. Sci. Comput.34, A2837-A2871. · Zbl 1257.62035
[78] Bui-Thanh, T., Ghattas, O., Martin, J. and Stadler, G. (2013), A computational framework for infinite-dimensional Bayesian inverse problems, I: The linearized case, with application to global seismic inversion, SIAM J. Sci. Comput.35, A2494-A2523. · Zbl 1287.35087
[79] Bui-Thanh, T., Willcox, K. and Ghattas, O. (2008a), Model reduction for large-scale systems with high-dimensional parametric input space, SIAM J. Sci. Comput.30, 3270-3288. · Zbl 1196.37127
[80] Bui-Thanh, T., Willcox, K. and Ghattas, O. (2008b), Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications, AIAA J.46, 2520-2529.
[81] Cai, X. C. and Keyes, D. E. (2002), Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput.24, 183-200. · Zbl 1015.65058
[82] Campbell, S. L., Ipsen, I. C. F., Kelley, C. T. and Meyer, C. D. (1994), GMRES and the minimal polynomial, BIT36, 664-675. · Zbl 0865.65017
[83] Carlberg, K., Farhat, C., Cortial, J. and Amsallem, D. (2013), The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys.242, 623-647. · Zbl 1299.76180
[84] Chaillat, S. and Biros, G. (2012), FaIMS: A fast algorithm for the inverse medium problem with multiple frequencies and multiple sources for the scalar Helmholtz equation, J. Comput. Phys.231, 4403-4421. · Zbl 1250.78023
[85] Chaturantabut, S. and Sorensen, D. (2010), Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput.32, 2737-2764. · Zbl 1217.65169
[86] Chen, P. and Ghattas, O. (2019), Hessian-based sampling for high-dimensional model reduction, Internat. J. Uncertain. Quantif.9, 103-121. · Zbl 1498.62106
[87] Chen, P. and Ghattas, O. (2020a), Projected Stein variational gradient descent, in Advances in Neural Information Processing Systems 33 (NeurIPS 2020) (Larochelle, H.et al., eds), Vol. 33, Curran Associates, pp. 1947-1958. Available at https://proceedings.neurips.cc/paper/2020.
[88] Chen, P. and Ghattas, O. (2020b), Stochastic optimization of heterogeneous epidemic models: Application to COVID-19 spread accounting for long-term care facilities. Preprint. · Zbl 1502.62098
[89] Chen, P. and Ghattas, O. (2020c), Taylor approximation for chance constrained optimization problems governed by partial differential equations with high-dimensional random parameters. Available at arXiv:2011.09985. · Zbl 1473.65072
[90] Chen, P. and Ghattas, O. (2021), Stein variational reduced basis Bayesian inversion, SIAM J. Sci. Comput.43, A1163-A1193. · Zbl 1467.62042
[91] Chen, P. and Schwab, C. (2015), Sparse-grid, reduced-basis Bayesian inversion, Comput. Methods Appl. Mech. Engng297, 84-115. · Zbl 1425.65020
[92] Chen, P. and Schwab, C. (2016a), Adaptive sparse grid model order reduction for fast Bayesian estimation and inversion, in Sparse Grids and Applications (Stuttgart 2014), Vol. 109 of Lecture Notes in Computational Science and Engineering, Springer, pp. 1-27. · Zbl 1337.65012
[93] Chen, P. and Schwab, C. (2016b), Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations, J. Comput. Phys.316, 470-503. · Zbl 1349.62076
[94] Chen, P., Haberman, M. and Ghattas, O. (2021), Optimal design of acoustic metamaterial cloaks under uncertainty, J. Comput. Phys.431, 110114. · Zbl 07511447
[95] Chen, P., Villa, U. and Ghattas, O. (2017), Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems, Comput. Methods Appl. Mech. Engng327, 147-172. · Zbl 1439.65071
[96] Chen, P., Villa, U. and Ghattas, O. (2019a), Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty, J. Comput. Phys.385, 163-186. · Zbl 1451.65076
[97] Chen, P., Wu, K., Chen, J., O’Leary-Roseberry, T. and Ghattas, O. (2019b), Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions, in Advances in Neural Information Processing Systems 32 (NeurIPS 2019) (Wallach, H.et al., eds), Curran Associates. Available at https://proceedings.neurips.cc/paper/2019.
[98] Collis, S. S. and Heinkenschloss, M. (2002), Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems. Report TR02-01, Department of Computational and Applied Mathematics, Rice University, Houston, TX.
[99] Colton, D. and Kress, R. (2019), Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93 of Applied Mathematical Sciences, fourth edition, Springer. · Zbl 1425.35001
[100] Crestel, B., Stadler, G. and Ghattas, O. (2018), A comparative study of regularizations for joint inverse problems, Inverse Problems35, 024003. · Zbl 1412.65197
[101] Cui, T., Law, K. J. H. and Marzouk, Y. M. (2016), Dimension-independent likelihood-informed MCMC, J. Comput. Phys.304, 109-137. · Zbl 1349.65009
[102] Cui, T., Martin, J., Marzouk, Y. M., Solonen, A. and Spantini, A. (2014), Likelihood-informed dimension reduction for nonlinear inverse problems, Inverse Problems30, 114015. · Zbl 1310.62030
[103] Cui, T., Marzouk, Y. M. and Willcox, K. E. (2015), Data-driven model reduction for the Bayesian solution of inverse problems, Internat. J. Numer. Methods Engng102, 966- 990. · Zbl 1352.65445
[104] Daon, Y. and Stadler, G. (2018), Mitigating the influence of the boundary on PDE-based covariance operators, Inverse Probl. Imaging12, 1083-1102. · Zbl 1401.65043
[105] Dashti, M. and Stuart, A. M. (2017), The Bayesian approach to inverse problems, in Handbook of Uncertainty Quantification (Ghanem, R., Higdon, D. and Owhadi, H., eds), Springer, pp. 311-428.
[106] De Los Reyes, J. C. (2015), Numerical PDE-Constrained Optimization, Springer. · Zbl 1312.65100
[107] Degroote, J., Vierendeels, J. and Willcox, K. (2010), Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis, Internat. J. Numer. Methods Fluids63, 207-230. · Zbl 1188.65110
[108] Demanet, L., Létourneau, P.-D., Boumal, N., Calandra, H., Chiu, J. and Snelson, S. (2012), Matrix probing: A randomized preconditioner for the wave-equation Hessian, Appl. Comput. Harmon. Anal.32, 155-168. · Zbl 1241.65062
[109] Dembo, R. S., Eisenstat, S. C. and Steihaug, T. (1982), Inexact Newton methods, SIAM J. Numer. Anal.19, 400-408. · Zbl 0478.65030
[110] Detommaso, G., Cui, T., Marzouk, Y. M., Spantini, A. and Scheichl, R. (2018), A Stein variational Newton method, in Advances in Neural Information Processing Systems 31 (NeurIPS 2018) (Bengio, S.et al., eds), Curran Associates, pp. 9187-9197.
[111] Dreyer, T., Maar, B. and Schulz, V. (2000), Multigrid optimization in applications, J. Comput. Appl. Math.120, 67-84. · Zbl 0955.65043
[112] Drmac, Z. and Gugercin, S. (2016), A new selection operator for the discrete empirical interpolation method: Improved a priori error bound and extensions, SIAM J. Sci. Comput.38, A631-A648. · Zbl 1382.65193
[113] Drohmann, M., Haasdonk, B. and Ohlberger, M. (2012), Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput.34, 937-969. · Zbl 1259.65133
[114] Drăgănescu, A. and Dupont, T. (2008), Optimal order multilevel preconditioners for regularized ill-posed problems, Math. Comp.77, 2001-2038. · Zbl 1198.65188
[115] Dunlop, M. M. (2019), Multiplicative noise in Bayesian inverse problems: Well-posedness and consistency of MAP estimators. Available at arXiv:1910.14632.
[116] Eftang, J. L. and Stamm, B. (2012), Parameter multi-domain ‘hp’ empirical interpolation, Internat. J. Numer. Methods Engng90, 412-428. · Zbl 1242.65255
[117] Eisenstat, S. C. and Walker, H. F. (1996), Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput.17, 16-32. · Zbl 0845.65021
[118] Eldred, M., Giunta, A. and Collis, S. (2004), Second-order corrections for surrogate-based optimization with model hierarchies, in 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA paper 2004-4457.
[119] Engl, H. W., Hanke, M. and Neubauer, A. (1996), Regularization of Inverse Problems, Vol. 375 of Mathematics and its Applications, Springer. · Zbl 0859.65054
[120] Epanomeritakis, I., Akçelik, V., Ghattas, O. and Bielak, J. (2008), A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion, Inverse Problems24, 034015. · Zbl 1142.65052
[121] Everson, R. and Sirovich, L. (1995), The Karhunen-Loève procedure for gappy data, J. Optical Soc. Amer.12, 1657-1664.
[122] Feng, C. and Marzouk, Y. M. (2019), A layered multiple importance sampling scheme for focused optimal Bayesian experimental design. Available at arXiv:1903.11187.
[123] Flath, P. H. (2013), Hessian-based response surface approximations for uncertainty quantification in large-scale statistical inverse problems, with applications to groundwater flow. PhD thesis, The University of Texas at Austin.
[124] Flath, P. H., Wilcox, L. C., Akçelik, V., Hill, J., Bloemen Waanders, B. Van and Ghattas, O. (2011), Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput.33, 407-432. · Zbl 1229.65174
[125] Flores, J. D. (1993), The conjugate gradient method for solving Fredholm integral equations of the second kind, Int. J. Comput. Math.48, 77-94. · Zbl 0821.65087
[126] Fortuna, Z. (1979), Some convergence properties of the conjugate gradient method in Hilbert space, SIAM J. Numer. Anal.16, 380-384. · Zbl 0414.65029
[127] Galbally, D., Fidkowski, K., Willcox, K. and Ghattas, O. (2010), Nonlinear model reduction for uncertainty quantification in large-scale inverse problems, Internat. J. Numer. Methods Engng81, 1581-1608. · Zbl 1183.76837
[128] Gerner, A.-L. and Veroy, K. (2012), Certified reduced basis methods for parametrized saddle point problems, SIAM J. Sci. Comput.34, A2812-A2836. · Zbl 1255.76024
[129] Ghanem, R. G. and Doostan, A. (2006), On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, J. Comput. Phys.217, 63-81. · Zbl 1102.65004
[130] Ghanem, R. G. and Spanos, P. D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer. · Zbl 0722.73080
[131] Ghavamian, F., Tiso, P. and Simone, A. (2017), POD-DEIM model order reduction for strain-softening viscoplasticity, Comput. Methods Appl. Mech. Engng317, 458-479. · Zbl 1439.74073
[132] Gholami, A., Mang, A. and Biros, G. (2016), An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas, J. Math. Biol.72, 409- 433. · Zbl 1333.92032
[133] Girolami, M. and Calderhead, B. (2011), Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B. Stat. Methodol.73, 123-214. · Zbl 1411.62071
[134] Giunta, A. A., Balabanov, V., Kaufman, M., Burgee, S., Grossman, B., Haftka, R. T., Mason, W. H. and Watson, L. T. (1997), Variable-complexity response surface design of an HSCT configuration, in Multidisciplinary Design Optimization: State of the Art (Alexandrov, N. M. and Hussaini, M. Y., eds), Society for Industrial and Applied Mathematics (SIAM). · Zbl 0878.73048
[135] Graham, W. R., Peraire, J. and Tang, K. Y. (1999), Optimal control of vortex shedding using low-order models, I: Open-loop model development, Internat. J. Numer. Methods Engng44, 945-972. · Zbl 0955.76026
[136] Grepl, M. and Patera, A. (2005), A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM Math. Model. Numer. Anal.39, 157-181. · Zbl 1079.65096
[137] Griewank, A. (1992), Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optim. Methods Software1, 35-54.
[138] Griewank, A. (2003), A mathematical view of automatic differentiation, in Acta Numerica, Vol. 12, Cambridge University Press, pp. 321-398. · Zbl 1047.65012
[139] Griewank, A. and Walther, A. (2008), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, second edition, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1159.65026
[140] Gu, C. (2011), QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems, IEEE Trans. Computer-Aided Des. Integr. Circuits Syst.30, 1307-1320.
[141] Gugercin, S., Antoulas, A. C. and Beattie, C. A. (2008), H_2 model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl.30, 609-638. · Zbl 1159.93318
[142] Gunzburger, M. D. (2003), Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1088.93001
[143] Gunzburger, M. D., Heinkenschloss, M. and Lee, H. K. (2000), Solution of elliptic partial differential equations by an optimization based domain decomposition method, Appl. Math. Comput.113, 111-139. · Zbl 1023.65126
[144] Haasdonk, B. and Ohlberger, M. (2008), Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM Math. Model. Numer. Anal.42, 277-302. · Zbl 1388.76177
[145] Haasdonk, B. and Ohlberger, M. (2011), Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition, Math. Comput. Model. Dyn. Syst.17, 145-161. · Zbl 1230.37110
[146] Haasdonk, B., Dihlmann, M. and Ohlberger, M. (2011), A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst.17, 423-442. · Zbl 1302.65221
[147] Haber, E. and Ascher, U. (2001), Preconditioned all-at-once methods for large, sparse parameter estimation problems, Inverse Problems17, 1847-1864. · Zbl 0995.65110
[148] Hadamard, J. (1923), Lectures on the Cauchy Problem in Linear Partial Differential Equations, Yale University Press. · JFM 49.0725.04
[149] Hager, W. W. (2000), Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math.87, 247-282. · Zbl 0991.49020
[150] Halko, N., Martinsson, P. G. and Tropp, J. A. (2011), Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev.53, 217-288. · Zbl 1269.65043
[151] Hanke, M. (1995), Conjugate Gradient Type Methods for Ill-Posed Problems, Vol. 327 of Pitman Research Notes in Mathematics, Longman Scientific & Technical. · Zbl 0830.65043
[152] Hanke, M. (2017), A Taste of Inverse Problems: Basic Theory and Examples, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1381.65042
[153] Hansen, P. C. (1998), Rank Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Society for Industrial and Applied Mathematics (SIAM).
[154] Harvazinski, M. E., Huang, C., Sankaran, V., Feldman, T. W., Anderson, W. E., Merkle, C. L. and Talley, D. G. (2015), Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor, Phys. Fluids27, 045102.
[155] Hay, A., Borggaard, J. T. and Pelletier, D. (2009), Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition, J. Fluid Mech.629, 41-72. · Zbl 1181.76045
[156] Heimbach, P., Hill, C. and Giering, R. (2002), Automatic generation of efficient adjoint code for a parallel Navier-Stokes solver, in Computational Science: ICCS 2002 (Sloot, P. M. A.et al., eds), Vol. 2330 of Lecture Notes in Computer Science, Springer, pp. 1019- 1028. · Zbl 1331.76003
[157] Heinemann, R. F. and Poore, A. B. (1981), Multiplicity, stability, and oscillatory dynamics of the tubular reactor, Chem. Engng Sci.36, 1411-1419.
[158] Heinkenschloss, M. (1993), Mesh independence for nonlinear least squares problems with norm constraints, SIAM J. Optim.3, 81-117. · Zbl 0771.65030
[159] Heinkenschloss, M. (2005), Time-domain decomposition iterative methods for the solution of distributed linear quadratic optimal control problems, J. Comput. Appl. Math.173, 169-198. · Zbl 1075.65091
[160] Heinkenschloss, M. and Herty, M. (2007), A spatial domain decomposition method for parabolic optimal control problems, J. Comput. Appl. Math.201, 88-111. · Zbl 1117.65099
[161] Heinkenschloss, M. and Leykekhman, D. (2010), Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems, SIAM J. Numer. Anal.47, 4607-4638. · Zbl 1218.49036
[162] Heinkenschloss, M. and Nguyen, H. (2006), Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems, SIAM J. Sci. Comput.28, 1001-1028. · Zbl 1120.49025
[163] Helin, T. and Kretschmann, R. (2020), Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems. Available at arXiv:2012.06603. · Zbl 1523.47061
[164] Herman, E., Alexanderian, A. and Saibaba, A. K. (2020), Randomization and reweighted ℓ_1 -minimization for A-optimal design of linear inverse problems, SIAM J. Sci. Comput.42, A1714-A1740. · Zbl 1442.62175
[165] Herrmann, F. J., Moghaddam, P. and Stolk, C. C. (2008), Sparsity- and continuity-promoting seismic image recovery with curvelet frames, Appl. Comput. Harmon. Anal.24, 150- 173. · Zbl 1135.68057
[166] Herzog, R. and Sachs, E. (2010), Preconditioned conjugate gradient method for optimal control problems with control and state constraints, SIAM J. Matrix Anal. Appl.31, 2291-2317. · Zbl 1209.49038
[167] Herzog, R. and Sachs, E. (2015), Superlinear convergence of Krylov subspace methods for self-adjoint problems in Hilbert space, SIAM J. Numer. Anal.53, 1304-1324. · Zbl 1312.65044
[168] Hesse, M. and Stadler, G. (2014), Joint inversion in coupled quasistatic poroelasticity, J. Geophys. Research: Solid Earth119, 1425-1445.
[169] Hinze, M. and Volkwein, S. (2008), Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, Comput. Optim. Appl.39, 319-345. · Zbl 1191.49040
[170] Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S. (2009), Optimization with PDE Constraints, Vol. 23 of Mathematical Modelling: Theory and Applications, Springer. · Zbl 1167.49001
[171] Hotelling, H. (1933), Analysis of a complex of statistical variables with principal components, J. Educ. Psychol.24, 417-441, 498-520. · JFM 59.1183.01
[172] Huan, X. and Marzouk, Y. M. (2013), Simulation-based optimal Bayesian experimental design for nonlinear systems, J. Comput. Phys.232, 288-317.
[173] Huan, X. and Marzouk, Y. M. (2014), Gradient-based stochastic optimization methods in Bayesian experimental design, Internat. J. Uncertain. Quantif.4, 479-510. · Zbl 1497.62069
[174] Huang, C., Duraisamy, K. and Merkle, C. L. (2019), Investigations and improvement of robustness of reduced-order models of reacting flow, AIAA J.57, 5377-5389.
[175] Huang, C., Xu, J., Duraisamy, K. and Merkle, C. (2018), Exploration of reduced-order models for rocket combustion applications, in AIAA Aerospace Sciences Meeting. AIAA paper 2018-1183.
[176] Hughes, T. J. R., Franca, L. P. and Mallet, M. (1986), A new finite element formulation for computational fluid dynamics, I: Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engng54, 223-234. · Zbl 0572.76068
[177] Hutter, K. (1983), Theoretical Glaciology, Mathematical Approaches to Geophysics, Reidel.
[178] Iliescu, T. and Wang, Z. (2014), Are the snapshot difference quotients needed in the proper orthogonal decomposition?, SIAM J. Sci. Comput.36, A1221-A1250. · Zbl 1297.65092
[179] Isaac, T., Petra, N., Stadler, G. and Ghattas, O. (2015), Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet, J. Comput. Phys.296, 348-368. · Zbl 1352.86017
[180] Ito, K. and Kunisch, K. (2008), Lagrange Multiplier Approach to Variational Problems and Applications, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1156.49002
[181] Jagalur-Mohan, J. and Marzouk, Y. M. (2020), Batch greedy maximization of non-submodular functions: Guarantees and applications to experimental design. Available at arXiv:2006.04554. · Zbl 07626767
[182] Jolliffe, I. (2005), Principal component analysis, in Encyclopedia of Statistics in Behavioral Science, Wiley. · Zbl 1011.62064
[183] Joughin, I., Alley, R. B. and Holland, D. M. (2012), Ice-sheet response to oceanic forcing, Science338 (6111), 1172-1176.
[184] Kaercher, M., Boyaval, S., Grepl, M. A. and Veroy, K. (2018), Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation, Optim. Engng19, 663-695. · Zbl 1507.49026
[185] Kaipio, J. and Somersalo, E. (2005), Statistical and Computational Inverse Problems, Vol. 160 of Applied Mathematical Sciences, Springer. · Zbl 1068.65022
[186] Kalmikov, A. G. and Heimbach, P. (2014), A Hessian-based method for uncertainty quantification in global ocean state estimation, SIAM J. Sci. Comput.36, S267-S295. · Zbl 1311.35321
[187] Kaufman, M., Balabanov, V., Giunta, A. A., Grossman, B., Mason, W. H., Burgee, S. L., Haftka, R. T. and Watson, L. T. (1996), Variable-complexity response surface approximations for wing structural weight in HSCT design, Comput. Mech.18, 112-126. · Zbl 0878.73048
[188] Kelley, C. T. (1999), Iterative Methods for Optimization, Society for Industrial and Applied Mathematics (SIAM). · Zbl 0934.90082
[189] Kelley, C. T. and Sachs, E. W. (1991), Mesh independence of Newton-like methods for infinite dimensional problems, J. Integral Equations Appl.3, 549-573. · Zbl 0756.65085
[190] Kennedy, M. C. and O’Hagan, A. (2001), Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B. Stat. Methodol.63, 425-464. · Zbl 1007.62021
[191] Kerner, E. H. (1981), Universal formats for nonlinear ordinary differential systems, J. Math. Phys.22, 1366-1371. · Zbl 0462.34019
[192] Khodabakhshi, P. and Willcox, K. (2021), Non-intrusive data-driven model reduction for differential algebraic equations derived from lifting transformations. Oden Institute Report 21-08, University of Texas at Austin. · Zbl 1507.65135
[193] Kirsch, A. (2011), An Introduction to the Mathematical Theory of Inverse Problems, second edition, Springer. · Zbl 1213.35004
[194] Kolda, T. G. and Bader, B. W. (2009), Tensor decompositions and applications, SIAM Rev.51, 455-500. · Zbl 1173.65029
[195] Korda, M. and Mezić, I. (2018), Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica93, 149-160. · Zbl 1400.93079
[196] Kosambi, D. D. (1943), Statistics in function space, J. Indian Math. Soc.7, 76-88. · Zbl 0063.03317
[197] Koval, K., Alexanderian, A. and Stadler, G. (2020), Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs, Inverse Problems36, 075007. · Zbl 1443.62213
[198] Kramer, B. (2020), Stability domains for quadratic-bilinear reduced-order models. Available at arXiv:2009.02769.
[199] Kramer, B. and Willcox, K. (2019), Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition, AIAA J.57, 2297-2307.
[200] Kramer, B. and Willcox, K. (2021), Balanced truncation model reduction for lifted nonlinear systems, in Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday of Thanos Antoulas (Beattie, C.et al., eds), Springer. To appear. · Zbl 1504.93045
[201] Kunisch, K. and Volkwein, S. (2001), Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math.90, 117-148. · Zbl 1005.65112
[202] Kunisch, K. and Volkwein, S. (2010), Optimal snapshot location for computing POD basis functions, ESAIM Math. Model. Numer. Anal.44, 509-529. · Zbl 1193.65113
[203] Kutz, J. N., Brunton, S. L., Brunton, B. W. and Proctor, J. L. (2016), Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1365.65009
[204] Lall, S., Marsden, J. E. and Glavaski, S. (2002), A subspace approach to balanced truncation for model reduction of nonlinear control systems, Internat. J. Robust Nonlinear Control12, 519-535. · Zbl 1006.93010
[205] Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M. and Ulbrich, S., eds (2012), Constrained Optimization and Optimal Control for Partial Differential Equations, Birkhäuser. · Zbl 1231.49001
[206] Leykekhman, D. (2012), Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput.53, 483-511. · Zbl 1262.65071
[207] Lieberman, C., Willcox, K. and Ghattas, O. (2010), Parameter and state model reduction for large-scale statistical inverse problems, SIAM J. Sci. Comput.32, 2523-2542. · Zbl 1217.65123
[208] Lindgren, F., Rue, H. and Lindström, J. (2011), An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B. Stat. Methodol.73, 423-498. · Zbl 1274.62360
[209] Liu, J. and Wang, Z. (2019), Non-commutative discretize-then-optimize algorithms for elliptic PDE-constrained optimal control problems, J. Comput. Appl. Math.362, 596- 613. · Zbl 1416.65172
[210] Liu, Q. and Wang, D. (2016), Stein variational gradient descent: A general purpose Bayesian inference algorithm, in Advances in Neural Information Processing Systems 29 (NIPS 2016) (Lee, D. D.et al., eds), Curran Associates, pp. 2378-2386.
[211] Loève, M. (1955), Probability Theory, Van Nostrand. · Zbl 0066.10903
[212] Lohmann, B. and Eid, R. (2009), Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models, in Methoden und Anwendungen der Regelungstechnik: Erlangen-Münchener Workshops 2007 und 2008 (Roppencker, G. and Lohmann, B., eds), Shaker, pp. 27-36.
[213] Lumley, J. L. (1967), The structure of inhomogeneous turbulent flow, in Atmospheric Turbulence and Radio Wave Propagation (Yaglom, A. M. and Tartarsky, V. I., eds), Nauka, pp. 166-178.
[214] Ly, H. V. and Tran, H. T. (2001), Modeling and control of physical processes using proper orthogonal decomposition, J. Math. Comput. Model.33, 223-236. · Zbl 0966.93018
[215] Mainini, L. and Willcox, K. (2015), Surrogate modeling approach to support real-time structural assessment and decision making, AIAA J.53, 1612-1626.
[216] Mardal, K.-A., Nielsen, B. and Nordaas, M. (2017), Robust preconditioners for PDE-constrained optimization with limited observations, BIT57, 405-431. · Zbl 1368.65099
[217] Martin, J., Wilcox, L. C., Burstedde, C. and Ghattas, O. (2012), A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM J. Sci. Comput.34, A1460-A1487. · Zbl 1250.65011
[218] Marzouk, Y. M. and Najm, H. N. (2009), Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys.228, 1862- 1902. · Zbl 1161.65308
[219] Marzouk, Y. M., Moselhy, T., Parno, M. and Spantini, A. (2016), Sampling via measure transport: An introduction, in Handbook of Uncertainty Quantification (Ghanem, R.et al., eds), Springer, pp. 1-41.
[220] Marzouk, Y. M., Najm, H. N. and Rahn, L. A. (2007), Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys.224, 560-586. · Zbl 1120.65306
[221] Mccormick, G. P. (1976), Computability of global solutions to factorable nonconvex programs, I: Convex underestimating problems, Math. Program.10, 147-175. · Zbl 0349.90100
[222] Mcquarrie, S. A., Huang, C. and Willcox, K. (2021), Data-driven reduced-order models via regularised operator inference for a single-injector combustion process, J. Royal Soc. New Zealand51, 194-211.
[223] Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, A. T., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. and Zhao, Z.-C. (2007), Global climate projections, in Climate Change 2007: The Physical Science Basis (Solomon, S. D.et al., eds), Cambridge University Press, pp. 747-845.
[224] Mezić, I. (2013), Analysis of fluid flows via spectral properties of the Koopman operator, Annu. Rev. Fluid Mech.45, 357-378. · Zbl 1359.76271
[225] Moselhy, T. A. E. and Marzouk, Y. M. (2012), Bayesian inference with optimal maps, J. Comput. Phys.231, 7815-7850. · Zbl 1318.62087
[226] Mueller, J. L. and Siltanen, S. (2012), Linear and Nonlinear Inverse Problems with Practical Applications, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1262.65124
[227] Naumann, U. (2012), The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1275.65015
[228] Nielsen, B. and Mardal, K.-A. (2010), Efficient preconditioners for optimality systems arising in connection with inverse problems, SIAM J. Control Optim.48, 5143-5177. · Zbl 1208.49047
[229] Nielsen, B. and Mardal, K.-A. (2012), Analysis of the minimum residual method applied to ill posed optimality systems, SIAM J. Sci. Comput.35, A785-A814. · Zbl 1266.49038
[230] Nocedal, J. and Wright, S. J. (2006), Numerical Optimization, second edition, Springer. · Zbl 1104.65059
[231] North, G. R., Bell, T. L., Cahalan, R. F. and Moeng, F. J. (1982), Sampling errors in the estimation of empirical orthogonal functions, Mon. Weather Rev.110, 699-706.
[232] Oden, J. T., Babuška, I. and Faghihi, D. (2017), Predictive computational science: Computer predictions in the presence of uncertainty, in Encyclopedia of Computational Mechanics, second edition, Wiley Online Library, pp. 1-26.
[233] O’Leary-Roseberry, T., Villa, U., Chen, P. and Ghattas, O. (2020), Derivative-informed projected neural networks for high-dimensional parametric maps governed by PDEs. Available at arXiv:2011.15110. · Zbl 1507.62299
[234] Oliver, D. S. (2017), Metropolized randomized maximum likelihood for improved sampling from multimodal distributions, SIAM/ASA J. Uncertain. Quantif.5, 259-277. · Zbl 1370.62018
[235] Oliver, D. S., He, H. and Reynolds, A. C. (1996), Conditioning permeability fields to pressure data, in 5th European Conference on the Mathematics of Oil Recovery (ECMOR V), European Association of Geoscientists & Engineers, pp. 1-11.
[236] Panzer, H., Mohring, J., Eid, R. and Lohmann, B. (2010), Parametric model order reduction by matrix interpolation, Automatisierungstechnik58, 475-484.
[237] Patera, A. T. and Rozza, G. (2006), Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Version 1.0, Copyright MIT.
[238] Paterson, W. S. B. and Budd, W. F. (1982), Flow parameters for ice sheet modeling, Cold Reg. Sci. Technol.6, 175-177.
[239] Pearson, J. W. and Wathen, A. (2012), A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl.19, 816-829. · Zbl 1274.65187
[240] Pearson, J. W., Stoll, M. and Wathen, A. (2012), Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl.33, 1126-1152. · Zbl 1263.65035
[241] Pearson, J. W., Stoll, M. and Wathen, A. J. (2014), Preconditioners for state constrained optimal control problems with Moreau-Yosida penalty function, Numer. Linear Algebra Appl.21, 81-97. · Zbl 1324.49026
[242] Peherstorfer, B. (2020), Sampling low-dimensional Markovian dynamics for preasymptotic-ally recovering reduced models from data with operator inference, SIAM J. Sci. Comput.42, A3489-A3515. · Zbl 1456.65120
[243] Peherstorfer, B. and Willcox, K. (2016), Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Methods Appl. Mech. Engng306, 196-215. · Zbl 1436.93062
[244] Peherstorfer, B., Butnaru, D., Willcox, K. and Bungartz, H. J. (2014), Localized discrete empirical interpolation method, SIAM J. Sci. Comput.36, A168-A192. · Zbl 1290.65080
[245] Peherstorfer, B., Drmac, Z. and Gugercin, S. (2020), Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points, SIAM J. Sci. Comput.42, A2837-A2864. · Zbl 1453.65287
[246] Petra, N., Martin, J., Stadler, G. and Ghattas, O. (2014), A computational framework for infinite-dimensional Bayesian inverse problems, II: Stochastic Newton MCMC with application to ice sheet flow inverse problems, SIAM J. Sci. Comput.36, A1525-A1555. · Zbl 1303.35110
[247] Petra, N., Zhu, H., Stadler, G., Hughes, T. J. R. and Ghattas, O. (2012), An inexact Gauss- Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, J. Glaciology58, 889-903.
[248] Prud’Homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A. T. and Turinici, G. (2002), Reliable real-time solution of parameterized partial differential equations: Reduced-basis output bound methods, J. Fluids Engng124, 70-80.
[249] Qian, E. (2021), A scientific machine learning approach to learning reduced models for nonlinear partial differential equations. PhD thesis, Massachusetts Institute of Technology.
[250] Qian, E., Grepl, M., Veroy, K. and Willcox, K. (2017), A certified trust region reduced basis approach to PDE-constrained optimization, SIAM J. Sci. Comput.39, S434-S460. · Zbl 1377.35078
[251] Qian, E., Kramer, B., Peherstorfer, B. and Willcox, K. (2020), Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems, Phys. D 406, 132401. · Zbl 1493.62512
[252] Rasmussen, C. E. and Williams, C. K. (2006), Gaussian Processes for Machine Learning, MIT Press. · Zbl 1177.68165
[253] Rees, T. and Wathen, A. (2011), Preconditioning iterative methods for the optimal control of the Stokes equations, SIAM J. Sci. Comput.33, 2903-2926. · Zbl 1300.49009
[254] Rees, T., Dollar, S. H. and Wathen, A. J. (2010a), Optimal solvers for PDE-constrained optimization, SIAM J. Sci. Comput.32, 271-298. · Zbl 1208.49035
[255] Rees, T., Stoll, M. and Wathen, A. (2010b), All-at-once preconditioning in PDE-constrained optimization, Kybernetika46, 341-360. · Zbl 1195.65083
[256] Rewienski, M. and (2003), A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Trans. Computer-Aided Des. Integr. Circuits Syst.22, 155-170.
[257] Rignot, E., Mouginot, J. and Scheuchl, B. (2011), Ice flow of the Antarctic ice sheet, Science333 (6048), 1427-1430.
[258] Rozza, G., Huynh, D. B. P. and Patera, A. T. (2008), Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Engng15, 229-275. · Zbl 1304.65251
[259] Savageau, M. A. and Voit, E. O. (1987), Recasting nonlinear differential equations as S-systems: A canonical nonlinear form, Math. Biosci.87, 83-115. · Zbl 0631.34015
[260] Schiela, A. and Ulbrich, S. (2014), Operator preconditioning for a class of inequality constrained optimal control problems, SIAM J. Optim.24, 435-466. · Zbl 1291.65092
[261] Schillings, C. and Schwab, C. (2013), Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Problems29, 065011. · Zbl 1278.65008
[262] Schillings, C., Sprungk, B. and Wacker, P. (2020), On the convergence of the Laplace approximation and noise-level-robustness of Laplace-based Monte Carlo methods for Bayesian inverse problems, Numer. Math.145, 915-971. · Zbl 1446.65098
[263] Schmid, P. J. (2010), Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[264] Schöberl, J. and Zulehner, W. (2007), Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl.29, 752-773. · Zbl 1154.65029
[265] Shewchuk, J. (1994), An introduction to the conjugate gradient method without the agonizing pain. Report, Carnegie Mellon University.
[266] Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree, F. (2001), Kriging models for global approximation in simulation-based multidisciplinary design optimization, AIAA J.39, 2233-2241.
[267] Sirovich, L. (1987), Turbulence and the dynamics of coherent structures, 1: Coherent structures, Quart. Appl. Math.45, 561-571. · Zbl 0676.76047
[268] Smith, R. C. (2013), Uncertainty Quantification: Theory, Implementation, and Applications, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1296.47001
[269] Ştefănescu, R., Sandu, A. and Navon, I. M. (2015), POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation, J. Comput. Phys.295, 569-595. · Zbl 1349.76535
[270] Stuart, A. M. (2010), Inverse problems: A Bayesian perspective, in Acta Numerica, Vol. 19, Cambridge University Press, pp. 451-559. · Zbl 1242.65142
[271] Subramanian, S., Scheufele, K., Mehl, M. and Biros, G. (2020), Where did the tumor start? An inverse solver with sparse localization for tumor growth models, Inverse Problems36, 045006. · Zbl 1467.92067
[272] Sullivan, T. J. (2015), Introduction to Uncertainty Quantification, Springer. · Zbl 1336.60002
[273] Swischuk, R., Kramer, B., Huang, C. and Willcox, K. (2020), Learning physics-based reduced-order models for a single-injector combustion process, AIAA J.58, 2658-2672.
[274] Swischuk, R., Mainini, L., Peherstorfer, B. and Willcox, K. (2019), Projection-based model reduction: Formulations for physics-based machine learning, Comput. Fluids179, 704- 717. · Zbl 1411.65061
[275] Symes, W. W. (2009), The seismic reflection inverse problem, Inverse Problems25, 123008. · Zbl 1181.35338
[276] Takacs, S. and Zulehner, W. (2011), Convergence analysis of multigrid methods with collective point smoothers for optimal control problems, Comput. Vis. Sci.14, 131-141. · Zbl 1250.65086
[277] Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1074.65013
[278] Tenorio, L. (2017), An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1435.65003
[279] Tong, S., Vanden-Eijnden, E. and Stadler, G. (2020), Extreme event probability estimation using PDE-constrained optimization and large deviation theory, with application to tsunamis. Available at arXiv:2007.13930. · Zbl 1483.35306
[280] Tröltzsch, F. (2010), Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Vol. 112 of Graduate Studies in Mathematics, American Mathematical Society. · Zbl 1195.49001
[281] Ulbrich, M. (2011), Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1235.49001
[282] Utke, J., Hascoët, L., Heimbach, P., Hill, C., Hovland, P. and Naumann, U. (2009), Toward adjoinable MPI, in IEEE International Symposium on Parallel & Distributed Processing (IPDPS 2009), IEEE, pp. 1-8.
[283] Venter, G., Haftka, R. and Starnes, J. H. (1998), Construction of response surface approximations for design optimization, AIAA J.36, 2242-2249.
[284] Veroy, K. and Patera, A. (2005), Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds, Internat. J. Numer. Methods Fluids47, 773-788. · Zbl 1134.76326
[285] Veroy, K., Prud’Homme, C., Rovas, D. V. and Patera, A. T. (2003), A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference. AIAA paper 2003-3847.
[286] Villa, U., Petra, N. and Ghattas, O. (2021), hIPPYlib: An extensible software framework for large-scale inverse problems governed by PDEs, I: Deterministic inversion and linearized Bayesian inference, ACM Trans. Math. Software47, 16. · Zbl 07467976
[287] Vogel, C. R. (2002), Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM). · Zbl 1008.65103
[288] Wang, K., Bui-Thanh, T. and Ghattas, O. (2018), A randomized maximum a posteriori method for posterior sampling of high dimensional nonlinear Bayesian inverse problems, SIAM J. Sci. Comput.40, A142-A171. · Zbl 1386.35391
[289] Wang, Q., Hesthaven, J. S. and Ray, D. (2019), Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys.384, 289-307. · Zbl 1459.76117
[290] Wang, Z., Bardsley, J. M., Solonen, A., Cui, T. and Marzouk, Y. M. (2017), Bayesian inverse problems with l_1 priors: A randomize-then-optimize approach, SIAM J. Sci. Comput.39, S140-S166. · Zbl 1422.65028
[291] Wilcox, L. C., Stadler, G., Bui-Thanh, T. and Ghattas, O. (2015), Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method, J. Sci. Comput.63, 138-162. · Zbl 1319.65051
[292] Wild, S. M., Regis, R. G. and Shoemaker, C. A. (2008), ORBIT: Optimization by radial basis function interpolation in trust-regions, SIAM J. Sci. Comput.30, 3197-3219. · Zbl 1178.65065
[293] Willcox, K. and Peraire, J. (2002), Balanced model reduction via the proper orthogonal decomposition, AIAA J.40, 2323-2330.
[294] Worthen, J., Stadler, G., Petra, N., Gurnis, M. and Ghattas, O. (2014), Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow, Phys. Earth Planet. Inter.234, 23-34.
[295] Wu, K., Chen, P. and Ghattas, O. (2020), A fast and scalable computational framework for large-scale and high-dimensional Bayesian optimal experimental design. Available at arXiv:2010.15196.
[296] Wu, K., Chen, P. and Ghattas, O. (2021), A fast and scalable computational framework for goal-oriented linear Bayesian optimal experimental design: Application to optimal sensor placement. Available at arXiv:2102.06627.
[297] Xiu, D. and Karniadakis, G. E. (2002), The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput.24, 619-644. · Zbl 1014.65004
[298] Yang, H. and Veneziani, A. (2017), Efficient estimation of cardiac conductivities via POD- DEIM model order reduction, Appl. Numer. Math.115, 180-199. · Zbl 1361.92046
[299] Yang, S., Stadler, G., Moser, R. and Ghattas, O. (2011), A shape Hessian-based boundary roughness analysis of Navier-Stokes flow, SIAM J. Appl. Math.71, 333-355. · Zbl 1215.35122
[300] Yücel, H., Heinkenschloss, M. and Karasözen, B. (2013), Distributed optimal control of diffusion-convection-reaction equations using discontinuous Galerkin methods, in Numerical Mathematics and Advanced Applications 2011 (Cangiani, A.et al., eds), Springer, pp. 389-397. · Zbl 1267.65076
[301] Zhang, Z., Bader, E. and Veroy, K. (2016), A slack approach to reduced-basis approximation and error estimation for variational inequalities, Comptes Rendus Mathématique354, 283-289. · Zbl 1387.65059
[302] Zhu, H., Li, S., Fomel, S., Stadler, G. and Ghattas, O. (2016a), A Bayesian approach to estimate uncertainty for full waveform inversion with a priori information from depth migration, Geophysics81, R307-R323.
[303] Zhu, H., Petra, N., Stadler, G., Isaac, T., Hughes, T. J. R. and Ghattas, O. (2016b), Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model, Cryosphere10, 1477-1494.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.