×

Model order reduction and error estimation with an application to the parameter-dependent eddy current equation. (English) Zbl 1303.93052

Summary: In product development, engineers simulate the underlying partial differential equation many times with commercial tools for different geometries. Since the available computation time is limited, we look for reduced models with an error estimator that guarantees the accuracy of the reduced model. Using commercial tools the theoretical methods proposed by G. Rozza et al. [Arch. Comput. Methods Eng. 15, No. 3, 229–275 (2008; Zbl 1304.65251)] lead to technical difficulties. We present how to overcome these challenges and validate the error estimator by applying it to a simple model of a solenoid actuator that is a part of a valve.

MSC:

93B11 System structure simplification
93E10 Estimation and detection in stochastic control theory
93C20 Control/observation systems governed by partial differential equations

Citations:

Zbl 1304.65251

Software:

rbMIT

References:

[1] Patera, A.T. and Rozza, G. Reduced Basis Approximation and A Posteriori Error Estimation for Parameterized Partial Differential Equations. Copyright MIT 2006, to appear in MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007. University of Bremen. Bremen.
[2] Grepl M., Reduced-Basis Approximations and a Posteriori Error Estimation for Parabolic Partial Differential Equations (2005) · Zbl 1079.65096
[3] Salimbahrami, B. and Lohmann, B. Krylov subspace methods in linear model order reduction: introduction and invariance properties. Sci. Rep. NR2, Institute of Automation, University of Bremen. Bremen. · Zbl 1354.65076
[4] Panzer H., Parametric model order reduction by matrix interpolation 58 pp 475– (2010)
[5] DOI: 10.1137/1.9780898718713 · doi:10.1137/1.9780898718713
[6] Lohmann B., Methoden und Anwendungen der Regelungstechnik pp 27– (2009)
[7] Rischmüller V., Eine Parallelisierung der Kopplung der Finite Elemente Methode und der Randele-mentmethode (2004)
[8] Pechstein C., Multigrid-Newton-Methods for Nonlinear Magnetostatic Problems (2004)
[9] Moosmann C., ParaMOR – Model order reduction for parameterized MEMS applications (2007)
[10] DOI: 10.1007/s11831-008-9019-9 · Zbl 1304.65251 · doi:10.1007/s11831-008-9019-9
[11] DOI: 10.1051/m2an:2008001 · Zbl 1388.76177 · doi:10.1051/m2an:2008001
[12] Volkwein S., Model Reduction using Proper Orthogonal Decomposition (2008) · Zbl 1191.49040
[13] Evans L.C., Partial Differential Equations (1998) · Zbl 0902.35002
[14] DOI: 10.1137/090759239 · Zbl 1226.82051 · doi:10.1137/090759239
[15] Volkwein S., Optimal and Suboptimal Control of Partial Differential Equations: Augumented Lagrange-SQP Methods and Reduced-Order Modeling with Proper Orthogonal Decomposition (2001) · Zbl 1005.49029
[16] Eftang J.L., preprint (2011), to appear in Math. Comput. Model. Dyn. Syst.
[17] Haasdonk, B. and Ohlberger, M. Adaptive basis enrichment for the reduced basis method applied to finite volume schemes. Proceedings of 5th International Symposium on Finite Volumes for Complex Applications. pp.471–478. Münster: University of Münster. · Zbl 1422.65207
[18] Haasdonk B., Sim Tech Preprint 2009–23 (2009)
[19] DOI: 10.1109/TMAG.2009.2012683 · doi:10.1109/TMAG.2009.2012683
[20] Albunni, N., Eid, R. and Lohmann, B. Model Order Reduction of Electromagnetic Devices with a Mixed Current-Voltage Excitation. Proceedings of MATHMOD. Vienna, Austria.
[21] Huynh D.B.P., CR Acad. Sci. Paris Ser. I 345 pp 473– (2007) · Zbl 1127.65086 · doi:10.1016/j.crma.2007.09.019
[22] DOI: 10.1137/09075250X · Zbl 1213.78011 · doi:10.1137/09075250X
[23] Fares M., The Reduced Basis Method for the Electric Field Integral Equation (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.