×

Properties of the support of solutions of a class of nonlinear evolution equations. (English) Zbl 1527.35343

Summary: In this work we consider equations of the form \[ \partial_t u+P\big(\partial_x \big) u+G\big( u,\partial_x u,\ldots,\partial_x^l u\big)=0, \] where \(P\) is any polynomial without constant term, and \(G\) is any polynomial without constant or linear terms. We prove that if \(u\) is a sufficiently smooth solution of the equation, such that \(\mathrm{supp}\, u(0),\mathrm{supp}\, u(T)\subset (-\infty,B]\) for some \(B>0\), then there exists \(R_0 >0\) such that \(\mathrm{supp}\, u(t)\subset (-\infty, R_0]\) for every \(t\in [0,T]\). Then, as an example of the application of this result, we employ it to show a unique continuation principle for the Kawahara equation, \[ \partial_t u+\partial_x^5 u+\partial_x^3 u+u\partial_x u=0, \] and for the generalized KdV hierarchy \[ \partial_t u+ (-1)^{k+1}\partial_x^{2k+1} u+G\big( u,\partial_x u,\ldots, \partial_x^{2k}u\big) =0. \]
{© 2022 Wiley-VCH GmbH.}

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35G25 Initial value problems for nonlinear higher-order PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
47J35 Nonlinear evolution equations
Full Text: DOI

References:

[1] J.Bourgain, On the compactness of the support of solutions of dispersive equations, Int. Math. Res. Not.1997, no. 9, 437-447. · Zbl 0882.35106
[2] E.Bustamante, P.Isaza, and J.Mejía, On the support of solutions to the Zakharov-Kuznetsov equation, J. Differential Equations251 (2011), 2728-2736. · Zbl 1231.35195
[3] T.Carleman, Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes, Almqvist & Wiksell, 1939. (French). · JFM 65.0394.03
[4] P.daSilva, Unique continuation for the Kawahara equation, TEMA Tend. Mat. Apl. Comput.8 (2007), no. 3, 463-473. · Zbl 1208.35137
[5] L.Dawson, Uniqueness properties of higher order dispersive equations, J. Differential Equations236 (2007), no. 1, 199-236. · Zbl 1122.35122
[6] A.Fokas, Aspects of integrability in one and several dimensions, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, World Scientific, pp. 45-77. · Zbl 0736.35116
[7] G.Fonseca and G.Ponce, The ivp for the Benjamin-Ono equation in weighted Sobolev spaces, J. Funct. Anal.260 (2011), no. 2, 436-459. · Zbl 1205.35249
[8] A.Il’Ichev and A.Marchenko, Propagation of long nonlinear waves in a ponderable fluid beneath an ice sheet, Fluid Dyn.24 (1989), no. 1, 73-79. · Zbl 0692.76006
[9] P.Isaza, Unique continuation principle for high order equations of Korteweg-de Vries type, Electron. J. Differential Equations246 (2013), 1-25. · Zbl 1288.35420
[10] P.Isaza and J.Mejía, On the support of solutions to the Ostrovsky equation with negative dispersion, J. Differential Equations247 (2009), no. 6, 1851-1865. · Zbl 1175.35125
[11] T.Kato, Local well‐posedness for Kawahara equation, Adv. Differential Equations16 (2011), no. 3/4, 257-287. · Zbl 1298.35176
[12] T.Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan33 (1972), no. 1, 260-264.
[13] C.Kenig, G.Ponce, and L.Vega, Higher‐order nonlinear dispersive equations, Proc. Amer. Math. Soc.122 (1994), no. 1, 157-166. · Zbl 0810.35122
[14] C.Kenig, G.Ponce, and L.Vega, On the hierarchy of the generalized KdV equations, Singular Limits of Dispersive Waves, Springer, 1994, pp. 347-356. · Zbl 0849.35121
[15] C.Kenig, G.Ponce, and L.Vega, On the support of solutions to the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéare, vol. 19, Elsevier, pp. 191-208. · Zbl 1001.35106
[16] S.Kichenassamy and P.Olver, Existence and nonexistence of solitary wave solutions to higher‐order model evolution equations, SIAM J. Math. Anal.23 (1992), no. 5, 1141-1166. · Zbl 0755.76023
[17] D.Korteweg and G.deVries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science39 (1895), no. 240, 422-443. · JFM 26.0881.02
[18] P.Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math.21 (1968), no. 5, 467-490. · Zbl 0162.41103
[19] J.Nahas and G.Ponce, On the persistent properties of solutions to semi‐linear Schrödinger equation, Comm. Partial Differential Equations34 (2009), no. 10, 1208-1227. · Zbl 1228.35229
[20] M.Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation, Nonlinear Anal.59 (2004), no. 3, 425-438. · Zbl 1061.35119
[21] M.Panthee, On the compact support of solutions to a nonlinear long internal waves model, Nepali Math. Sci. Rep.24 (2005), no. 1, 49-58. · Zbl 1427.35211
[22] M.Panthee, Unique continuation property for the Kadomtsev-Petviashvili (KP‐II) equation, Electron. J. Differential Equations2005, no. 59, 1-12. · Zbl 1080.35125
[23] J.Saut and B.Scheurer, Unique continuation for some evolution equations, J. Differential Equations66 (1987), no. 1, 118-139. · Zbl 0631.35044
[24] E.Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc.67 (1961), no. 1, 102-104. · Zbl 0127.32002
[25] E.Stein, Singular integrals and differentiability properties of functions (PMS‐30), Princeton University Press, 1971.
[26] B.Zhang, Unique continuation for the Korteweg-de Vries equation, SIAM J. Math. Anal.23 (1992), no. 1, 55-71. · Zbl 0746.35045
[27] Z.Zhang and J.Huang, Well‐posedness and unique continuation property for the generalized Ostrovsky equation with low regularity, Math. Methods Appl. Sci.39 (2016), no. 10, 2488-2513. · Zbl 1348.35227
[28] Z.Zhang et al., On the unique continuation property for the modified Kawahara equation, Adv. Math. (China)45 (2016), no. 1, 80-88. · Zbl 1363.35340
[29] Z.Zhang et al., Well‐posedness and unique continuation property for the solutions to the generalized Kawahara equation below the energy space, Appl. Anal.97 (2018), no. 15, 2655-2685. · Zbl 1454.35330
[30] Z.Zhang et al., Low regularity for the higher order nonlinear dispersive equation in sobolev spaces of negative index, J. Dynam. Differential Equations31 (2019), no. 1, 419-433. · Zbl 1421.35043
[31] J.Zufiria, Symmetry breaking in periodic and solitary gravity‐capillary waves on water of finite depth, J. Fluid Mech.184 (1987), 183-206. · Zbl 0634.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.