×

A hybrid DE optimized wavelet kernel SVR-based technique for algal atypical proliferation forecast in La Barca reservoir: a case study. (English) Zbl 1423.92006

Summary: The atypical proliferation of algae is a consequence of eutrophication, a phenomenon responsible for the deterioration of reservoirs and lakes. Its growth over the last few decades forced different administrations to adopt different solutions, including forecasting and management, with the help of mathematical models. This article presents a model of eutrophication of reservoirs based on a new methodology called multiscale Mexican Hat wavelet as the kernel function for the support vector regression (SVR) method and differential evolution (DE) optimization technique to estimate the abnormal proliferation of algae from physicochemical and biological variables. The present method implies the optimization of the SVR hyperparameters during the training process. In addition, five other SVR models with different nuclei (linear, quadratic, cubic, sigmoid and radial base function) and random forests (RF) were adjusted to experimental data for purposes of comparison. In addition to successfully predicting atypical algae growth (determination coefficients equal to 0.88 and 0.93), the model shown here can establish the importance of each biological and physicochemical parameter of improved algae growth. Finally, the main conclusions of this research work are presented.

MSC:

92-08 Computational methods for problems pertaining to biology
92D40 Ecology

Software:

LIBSVM

References:

[1] Grundy, R. D., Strategies for control of man-made eutrophication, Environ. Sci. Techol., 5, 1184-1190 (1971)
[2] Smith, V. H., Low nitrogen to phosphorus ratios favor dominance by blue – green algae in Lake Phytoplankton, Science, 221, 4611, 669-671 (1983)
[3] Reynolds, C. S., Ecology of Phytoplankton (2006), Cambridge University Press: Cambridge University Press New York
[4] Alexandrov, M. H.; Bloesch, J., Eutrophication of lake Tasaul, Romania—proposals for rehabilitation, Environ. Sci. Pollut. R, 16, 1, 42-45 (2009)
[5] Xue, X.; Landis, A., Eutrophication potential of food consumption patterns, Environ. Sci. Technol., 44, 6450-6456 (2010)
[6] Álvarez Cobelas, M.; Arauzo, M., Phytoplankton responses to varying time scales in a eutrophic reservoir, Arch. Hydrobiol. Ergebn. Limnol., 40, 69-80 (2006)
[7] Texeira, M. R.; Rosa, M. J., Comparing disolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: part I: the key operating conditions, Sep. Purif. Technol., 52, 84-94 (2006)
[8] Liu, Y.; Guo, H.; Yu, Y.; Dai, Y.; Zhou, F., Ecological – economic modeling as a tool for watershed management: A case study of Lake Qionghai watershed, China, Limnologica, 38, 2, 89-104 (2008)
[9] Takaara, T.; Sano, D.; Masago, Y.; Omura, T., Surface – retained organica matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment, Water Res., 44, 3781-3786 (2010)
[10] Gibson, G.; Carlson, R.; Simpson, J.; Smelzer, E., Nutrient criteria technical guidance manual: lakes and reservoirs, (EPA-822-B-00-001, United States Environment Protection Agency (USEPA), Office of Water (2000))
[11] Karydis, M., Eutrophication assessment of coastal waters based on indicators: a literature review, Glob. NEST J., 11, 373-390 (2009)
[12] Spatharis, S.; Tsirtsis, G., Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in Eastern Mediterranean, Ecol. Indic., 10, 4, 840-847 (2010)
[13] Directive 2000/60/EC of the European Parliament and of the Council of 23 2000, Establishing a framework for community action in the field of water policy, L-327, Luxembourg.; Directive 2000/60/EC of the European Parliament and of the Council of 23 2000, Establishing a framework for community action in the field of water policy, L-327, Luxembourg.
[14] Borja, A.; Dauer, D. M., Assessing the environmental quality status in estuarine and coastal systems: Comparing methodologies and indices, Ecol. Indic., 8, 331-337 (2008)
[15] Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollinger, U.; Zohary, T., Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 35, 403-424 (1999)
[16] Wang, S. R.; Jin, X. C.; Bu, Q. Y.; Jiao, L. X.; Wu, F. C., Effects of dissolved oxygen supply level on phosphorus release from lake sediments, Colloids Surf. A, 316, 245-252 (2008)
[17] Kitsiou, D.; Karydis, M., Coastal marine eutrophication assessment: a review on data analysis, Environ. Int., 37, 778-801 (2011)
[18] Karlson, K.; Rosenberg, R.; Bonsdorff, E., Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian waters – a review, Oceanogr. Mar. Biol. Ann. Rev., 40, 427-489 (2002)
[19] Charpa, S. C., Surface Water-quality Modelling (1997), McGraw-Hill: McGraw-Hill New York
[20] Díaz, R. J.; Rosenberg, R., Introduction to environmental and economic consequences of hypoxia, Int. J. Water Resour. Dev., 27, 71-82 (2011)
[21] Storn, R. M.; Price, K., Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341-359 (1997) · Zbl 0888.90135
[22] Price, K.; Storn, R. M.; Lampinen, J. A., Differential Evolution: A Practical Approach to Global Optimization (2005), Springer: Springer Berlin · Zbl 1186.90004
[23] Feoktistov, V., Differential Evolution: In Search of Solutions (2006), Springer: Springer New York · Zbl 1136.90001
[24] Rocca, P.; Oliveri, G.; Massa, A., Differential evolution as applied to electromagnetics, IEEE Antennas Propag., 53, 1, 38-49 (2011)
[25] Mitchell, T. M., Machine Learning (1997), McGraw-Hill Company Inc: McGraw-Hill Company Inc New York · Zbl 0913.68167
[26] Breiman, L., Random forests, Mach. Learn., 45, 1, 5-32 (2001) · Zbl 1007.68152
[27] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning (2003), Springer-Verlag: Springer-Verlag New York
[28] Schölkopf, B.; Smola, A. J.; Williamson, R.; Bartlett, P., New support vector algorithms, Neural Comput., 12, 5, 1207-1245 (2000)
[29] Hansen, T.; Wang, C. J., Support vector based battery state of charge estimator, J. Power Sources, 141, 351-358 (2005)
[30] Li, X.; Lord, D.; Zhang, Y.; Xie, Y., Predicting motor vehicle crashes using Support Vector Machine models, Accident Anal. Prev., 40, 1611-1618 (2008)
[31] Steinwart, I.; Christmann, A., Support Vector Machines (2008), Springer: Springer New York · Zbl 1203.68171
[32] Kulkarni, S.; Harman, G., An Elementary Introduction to Statistical Learning Theory (2011), Wiley: Wiley New York · Zbl 1231.68015
[33] Eberhart, R. C.; Shi, Y.; Kennedy, J., Swarm Intelligence (2001), Morgan Kaufmann: Morgan Kaufmann San Francisco
[34] Clerc, M., Particle Swarm Optimization (2006), Wiley-ISTE: Wiley-ISTE London, United Kingdom · Zbl 1130.90059
[35] Olsson, A. E., Particle Swarm Optimization: Theory, Techniques and Applications (2011), Nova Science Publishers: Nova Science Publishers New York
[36] Simon, D., Evolutionary Optimization Algorithms (2013), Wiley: Wiley New York · Zbl 1280.68008
[37] Yang, X.-S.; Cui, Z.; Xiao, R.; Gandomi, A. H.; Karamanoglu, M., Swarm Intelligence and Bio-inspired Computation: Theory and Applications (2013), Elsevier: Elsevier London
[38] García Nieto, P. J.; Martínez Torres, J.; Araújo Fernández, M.; Ordóñez Galán, C., Support vector machines and neural networks used to evaluate paper manufactured using Eucalyptus globulus, Appl. Math. Model., 36, 12, 6137-6145 (2012) · Zbl 1349.90857
[39] Quej, V. H.; Almorox, J.; Arnaldo, J. A.; Saito, L., ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment, J. Atmos. Sol-Terr. Phys., 155, 62-70 (2017)
[40] Meenal, R.; Selvakumar, A. I., Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters, Renew. Energ., 121, 324-343 (2018)
[41] Suárez Sánchez, A.; García Nieto, P. J.; Riesgo Fernández, P.; del Coz Díaz, J. J.; Iglesias-Rodríguez, F. J., Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain), Math. Comput. Model., 54, 5-6, 1453-1466 (2011)
[42] García Nieto, P. J.; Combarro, E. F.; del Coz Díaz, J. J.; Montañés, E., A SVM-based regression model to study the air quality at local scale in oviedo urban area (Northern Spain): A case study, Appl. Math. Comput., 219, 17, 8923-8937 (2013)
[43] García Nieto, P. J.; García-Gonzalo, E.; Alonso Fernández, J. R.; Díaz Muñiz, C., Hybrid PSO-SVM-based method for long-term forecasting of turbidity in the Nalón river basin: A case study in Northern Spain, Ecol. Eng., 73, 192-200 (2014)
[44] Xu, X.; Liu, Y.; Liu, S.; Li, J.; Guo, G.; Smith, K., Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods, J. Environ. Manag., 238, 201-209 (2019)
[45] Fister, I.; Stranad, D.; Yang, X.-S.; Fister Jr, I., Adaptation and hybridization in nature-inspired algorithms, (Fister, I.; Fister Jr, I., Adaptation and Hybridization in Computational Intelligence, Vol. 18 (2015), Springer: Springer New York), 3-50
[46] Fogg, G. E.; Stewart, W. D.P.; Fay, P.; Walsby, A. E., The Blue – green Algae (1973), Academic Press: Academic Press London
[47] World Health Organization, Guidelines for drinking-water quality: health criteria and other supporting information, vol. 2, Geneva, World Health 408 Organization, 1998.; World Health Organization, Guidelines for drinking-water quality: health criteria and other supporting information, vol. 2, Geneva, World Health 408 Organization, 1998.
[48] Smith, M. J.; Shaw, G. R.; Eaglesham, G. K.; Ho, L.; Brookes, J. D., Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sources, Environ. Toxicol., 23, 413-421 (2008)
[49] Willame, R.; Jurckzak, T.; Iffly, J. F.; Kull, T.; Meriluoto, J.; Hoffman, L., Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg, Hydrobiologia, 551, 99-117 (2005)
[50] Brönmark, C.; Hansson, L.-A., The Biology of Lakes and Ponds (2005), Oxford University Press: Oxford University Press New York
[51] Quesada, A.; Moreno, E.; Carrasco, D.; Paniagua, T.; Wormer, L.; de Hoyos, C.; Sukenik, A., Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir, Eur. J. Phycol., 41, 39-45 (2006)
[52] Negro, A. I.; de Hoyos, C.; Vega, J. C., Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain), Hydrobiologia, 424, 25-37 (2000)
[53] American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, no. 21. APHA/AWWA/WEF, Washington, 2005.; American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, no. 21. APHA/AWWA/WEF, Washington, 2005.
[54] France, R. L.; Peters, R. H., Predictive model of the effects on Lake Metabolism of decreased airborne litter fall through riparian deforestation, Conserv. Biol., 9, 6, 1578-1586 (1995)
[55] Nicholls, K. H.; Steedman, R. J.; Carey, E. C., Changes in phytoplankton communities following logging in the drainage basins of three boreal forest lakes in north-western Ontario, Can. J. Fish. Aquat. Sci., 60, 43-54 (2003)
[56] Vapnik, V., The Nature of Statistical Learning Theory (1999), Springer: Springer New York · Zbl 0928.68093
[57] Smola, A. J.; Schölkopf, B., A tutorial on support vector regression, Stat. Comput., 14, 3, 199-222 (2004)
[58] Cristianini, N.; Shawe-Taylor, J., An Introduction to Support Vector Machines and other Kernel – based Learning Methods (2000), Cambridge University Press: Cambridge University Press New York
[59] Shawe-Taylor, J.; Cristianini, N., Kernel Methods for Pattern Analysis (2004), Cambridge University Press: Cambridge University Press New York
[60] Wu, Q., The forescasting model based on wavelet support vector machine, Expert Syst. Appl., 36, 4, 7604-7610 (2009)
[61] Wei, C.-C., Wavelet kernel support vector machines forecasting techniques: Case study on water-level predictions during typhoons, Expert Syst. Appl., 39, 5189-5199 (2012)
[62] Zhang, L.; Zhou, W.; Jiao, L., Wavelet support vector machine, IEEE Trans. Syst. Man Cybern. B, 34, 1, 34-39 (2004)
[63] García Nieto, P. J.; García-Gonzalo, E.; Alonso Fernández, J. R.; Díaz Muñiz, C., A hybrid wavelet kernel SVM-based method using artificial bee colony algorithm for predicting the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir (Northern Spain), J. Comput. Appl. Math., 309, 587-602 (2017) · Zbl 1404.92216
[64] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961-1005 (2009) · Zbl 0738.94004
[65] Zhang, Q. H.; Benveniste, A., Wavelet networks, IEEE Trans. Neural Netw., 3, 889-898 (1992)
[66] Chen, G. Y.; Xie, W. F., Pattern recognition with SVM and dual-tree complex wavelets, Image Vis. Comput., 25, 960-966 (2007)
[67] Kingsbury, N.; Tay, D. B.H.; Palaniswami, M., Multi-scale kernel methods for classification, (IEEE Workshop on Machine Learning for Signal Processing (2005)), 43-48
[68] Dalwani, M. S., Machine Learning in Neuroimaging Based Modalities using Support Vector Machines with Wavelet Kernels (2017), University of Colorado, (Ph.D. Dissertation)
[69] Breiman, L.; Friedman, J.; Olshen, R.; Stone, C., Classification and Regression Trees (1984), Wadsworth and Brooks: Wadsworth and Brooks Monterrey, CA · Zbl 0541.62042
[70] Rodriguez-Galiano, V.; Mendes, M. P.; Garcia-Soldado, M. J.; Chica-Olmo, M.; Ribeiro, L., Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain), Sci. Total Environ., 476-477, 189-206 (2014)
[71] Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W., Estimation of biomass in wheat using random forest regression algorithm and remote sensing data, Crop J., 4, 212-219 (2016)
[72] Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C.; Villa-Vialaneix, N., Random forests for big data, Big Data Res., 9, 28-46 (2017)
[73] Allman, E. S.; Rhodes, J. A., Mathematical Models in Biology: An Introduction (2003), Cambridge University Press: Cambridge University Press New York
[74] Barnes, D. J.; Chu, D., Introduction to Modeling for Biosciences (2010), Springer: Springer New York
[75] Wasserman, L., All of Statistics: A Concise Course in Statistical Inference (2003), Springer: Springer New York
[76] Freedman, D.; Pisani, R.; Purves, R., Statistics (2007), W.W. Norton & Company: W.W. Norton & Company New York · Zbl 1353.62003
[77] Picard, R.; Cook, D., Cross-validation of regression models, J. Amer. Statist. Assoc., 79, 387, 575-583 (1984) · Zbl 0547.62047
[78] Chang, C.-C.; Lin, C.-J., LIBSVM: a library for support vector machines, ACM Trans. Int. Syst. Technol., 2, 1-27 (2011)
[79] Du, K.-L.; Swamy, M. N.S., Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature (2016), Birkhäuser: Birkhäuser New York · Zbl 1351.90002
[80] Kaveh, A.; Bakhshpoori, T., Metaheuristics: Outlines, MATLAB Codes and Examples (2019), Springer: Springer Berlin · Zbl 1418.90006
[81] Chorus, I.; Bartram, J., Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management (1999), E & FN Spon: E & FN Spon London
[82] Aboal, M.; Puig, M. A., Intracellular and dissolved microcystins in reservoirs of the river Segura basin, Murcia, SE Spain, Toxicon, 45, 4, 509-518 (2005)
[83] Gault, P. M.; Marler, H. J., Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications (2009), Nova Science Publishers: Nova Science Publishers New York
[84] Dow, C. S.; Swoboda, U. K., Cyanotoxins, (Whitton, B. A.; Potts, M., The Ecology of Cyanobacteria: Their Diversity in Time and Space (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands), 613-632
[85] Pérez-Martínez, C.; Sánchez-Castillo, P., Temporal occurrence of ceratium hirundinella in Spanish reservoirs, Hydrobiologia, 452, 101-107 (2004)
[86] Zeeb, B. A.; Christie, C. E.; Smol, J. P.; Findlay, D. L.; Kling, H. J.; Birks, H. J.B., Responses of diatom and chrysophyte assemblages in lake 227 sediments to experimental eutrophication, Can. J. Fish. Aquat. Sci., 51, 10, 2300-2311 (1994)
[87] Ortega-Mayagoitia, E.; Rojo, C., Phytoplankton from the Daimiel National Park. II. Cyanophytes, dinoflagellates, cryptophytes, chrysophytes and xanthophytes, Anal. Jardín Bot. Mad., 57, 2, 250-266 (2000)
[88] Fields, S., Global nitrogen: cycling out of control, Environ. Health Persp., 112, 10, A556-A563 (2004)
[89] Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H. W.; Shen, J.; Wang, R.; Li, F.; Tao, S.; Dong, Y.; Tang, X., Evidence for the importance of atmospheric nitrogen deposition to eutrophic lake Dianchi, China, Environ. Sci. Technol., 51, 12, 6699-6708 (2017)
[90] Huang, Y.; Chen, M., Variation of dissolved oxygen in the experiments of occurrence & disappearance for Microcystis bloom, Procedia Environ. Sci., 18, 559-566 (2013)
[91] Gadi, V. K.; Tang, Y.-R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L., Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique, Catena, 155, 20-29 (2017)
[92] Arend, K. K.; Betelsky, D.; DePinto, J. V.; Ludsin, S. A.; Roberts, J. J.; Rucinski, D. K.; Scavia, D.; Schwab, D. J.; Hook, T. O., Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie, Freshwater Biol., 56, 366-383 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.