×

Diameter and Laplace eigenvalue estimates for left-invariant metrics on compact Lie groups. (English) Zbl 1507.58005

Summary: Let \(G\) be a compact connected Lie group of dimension \(m\). Once a bi-invariant metric on \(G\) is fixed, left-invariant metrics on \(G\) are in correspondence with \(m \times m\) positive definite symmetric matrices. We estimate the diameter and the smallest positive eigenvalue of the Laplace-Beltrami operator associated to a left-invariant metric on \(G\) in terms of the eigenvalues of the corresponding positive definite symmetric matrix. As a consequence, we give partial answers to a conjecture by Eldredge, Gordina and Saloff-Coste; namely, we give large subsets \(\mathcal{S}\) of the space of left-invariant metrics \({\mathcal{M}}\) on \(G\) such that there exists a positive real number \(C\) depending on \(G\) and \(\mathcal{S}\) such that \(\lambda_1(G,g)\mathrm{diam}(G,g)^2 \leq C\) for all \(g\in \mathcal{S} \). The existence of the constant \(C\) for \(\mathcal{S}={\mathcal{M}}\) is the original conjecture.

MSC:

58C40 Spectral theory; eigenvalue problems on manifolds
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
22C05 Compact groups
53C30 Differential geometry of homogeneous manifolds
53C17 Sub-Riemannian geometry

Software:

MathOverflow

References:

[1] Agrachev, A.; Barilari, D.; Boscain, U., Comprehensive Introduction to Sub-Riemannian geometry, A. Cambridge Stud. Adv Math, vol. 181 (2019), Cambridge: Cambridge University Press, Cambridge · Zbl 1487.53001 · doi:10.1017/9781108677325
[2] Berger, M., A Panoramic View of Riemannian Geometry (2003), Berlin: Springer-Verlag, Berlin · Zbl 1038.53002 · doi:10.1007/978-3-642-18245-7
[3] Bettiol, R., Lauret, E.A., Piccione, P.: The first eigenvalue of a homogeneous CROSS. arXiv:arXiv:2001.08471 (2020)
[4] Bettiol, R.; Piccione, P., Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres, Calc. Var. Partial Differ. Equ., 47, 3-4, 789-807 (2013) · Zbl 1272.53042 · doi:10.1007/s00526-012-0535-y
[5] Burago, D., Burago, Y. u., Ivanov, S.: A course in metric geometry. Grad. Stud. Math. 33. Amer. Math. Soc., Providence (2001) · Zbl 0981.51016
[6] Cheng, S-Y, Eigenvalue comparison theorems its geometric applications, Math. Z., 143, 289-297 (1975) · Zbl 0329.53035 · doi:10.1007/BF01214381
[7] Eldredge, N.; Gordina, M.; Saloff-Coste, L., Left-invariant geometries on SU(2) are uniformly doubling, Geom. Funct. Anal., 28, 5, 1321-1367 (2018) · Zbl 1407.53034 · doi:10.1007/s00039-018-0457-8
[8] Freedman, MH; Kitaev, A.; Lurie, J., Diameters of homogeneous spaces, Math. Res. Lett., 10, 1, 11-20 (2003) · Zbl 1029.22031 · doi:10.4310/MRL.2003.v10.n1.a2
[9] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[10] Judge, C.; Lyons, R., Upper bounds for the spectral function on homogeneous spaces via volume growth, Rev. Mat. Iberoam., 35, 6, 1835-1858 (2019) · Zbl 1436.58023 · doi:10.4171/rmi/1103
[11] Kliemann, M.: The Thickness of Left-Invariant Metrics on Compact Connected Lie Groups. Thesis, Christian-Albrechts-Universität zu Kiel. https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-248263 (2019)
[12] Knapp, AW, Lie Groups Beyond an Introduction. Progr. Math., vol. 140 (2002), Cambridge: Birkhäuser Boston Inc., Cambridge · Zbl 1075.22501
[13] Kupeli, DN, Singular Semi-Riemannian Geometry. Mathematics and Its Applications (1996), Netherlands: Springer, Netherlands · Zbl 0871.53001 · doi:10.1007/978-94-015-8761-7
[14] Kuranishi, M., On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. J., 2, 63-71 (1951) · Zbl 0045.31003 · doi:10.1017/S0027763000010059
[15] Lauret, EA, The smallest Laplace eigenvalue of homogeneous 3-spheres, Bull. Lond. Math. Soc., 51, 1, 49-69 (2019) · Zbl 1426.58008 · doi:10.1112/blms.12213
[16] Lauret, EA, On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups, Proc. Amer. Math. Soc., 148, 8, 3375-3380 (2020) · Zbl 1450.58003 · doi:10.1090/proc/14969
[17] Le Donne, E.: Lecture notes on sub-Riemannian geometry. Unpublished monograph available on the https://sites.google.com/site/enricoledonne/ author’s web page (2020)
[18] Li, P., Eigenvalue estimates on homogeneous manifolds, Comment. Math. Helvetici, 55, 347-363 (1980) · Zbl 0451.53036 · doi:10.1007/BF02566692
[19] Li, P., Yau, S.-T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii (1979) Proc. Sympos. Pure Math. XXXVI), pp 205-239 (1980) · Zbl 0441.58014
[20] Ling, J.; Lu, Z., Bounds of eigenvalues on Riemannian manifolds, Trends Partial Differ. Equ. Adv. Lect. Math. (ALM), 10, 241-264 (2010) · Zbl 1200.58020
[21] Virgós, EM, Non-closed Lie subgroups of Lie groups, Ann. Global Anal. Geom., 11, 1, 35-40 (1993) · Zbl 0831.57016 · doi:10.1007/BF00773362
[22] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Math. Surv. Monogr., 91, Amer. Math. Soc., Providence (2002) · Zbl 1044.53022
[23] Mutô, H.; Urakawa, H., On the least positive eigenvalue of Laplacian for compact homogeneous spaces. Osaka, J. Math., 17, 2, 471-484 (1980) · Zbl 0446.53037
[24] Podobryaev, AV, Diameter of the Berger sphere, Math. Notes, 103, 5-6, 846-851 (2018) · Zbl 1402.58008 · doi:10.1134/S0001434618050188
[25] Podobryaev, AV; Sachkovm, YL, Cut locus of a left invariant Riemannian metric on SO3 in the axisymmetric case, J. Geom. Phys., 110, 436-453 (2016) · Zbl 1352.53044 · doi:10.1016/j.geomphys.2016.09.005
[26] Richardson, RW, A rigidity theorem for subalgebras of Lie and associative algebras, Illinois J. Math., 11, 92-110 (1967) · Zbl 0147.28202 · doi:10.1215/ijm/1256054787
[27] Schoen, R.; Yau, S-T, Lectures on Differential Geometry (1994), Cambridge MA: International Press, Cambridge MA · Zbl 0830.53001
[28] Sugahara, K., On the diameter of compact homogeneous Riemannian manifolds, Publ. Res. Inst. Math. Sci., 16, 835-847 (1980) · Zbl 0453.53032 · doi:10.2977/prims/1195186932
[29] Urakawa, H., On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, 31, 1, 209-226 (1979) · Zbl 0402.58012 · doi:10.2969/jmsj/03110209
[30] Urakawa, H., The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compos. Math., 59, 1, 57-71 (1986) · Zbl 0615.53040
[31] Urakawa, H., Spectral Geometry of the Laplacian. Spectral Analysis and Differential Geometry of the Laplacian (2017), Hackensack NJ: World Scientific, Hackensack NJ · Zbl 1393.35001 · doi:10.1142/10018
[32] Wallach, N., Harmonic analysis on homogeneous spaces Pure and Applied Mathematics, vol. 19 (1973), New York: Marcel Dekker, Inc., New York · Zbl 0265.22022
[33] Yang, D., Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature, Pac. J. Math., 190, 2, 383-398 (1999) · Zbl 1016.58016 · doi:10.2140/pjm.1999.190.383
[34] Yang, L., Injectivity radius and Cartan polyhedron for simply connected symmetric spaces, Chin. Ann. Math., Ser B, 28, 6, 685-700 (2007) · Zbl 1140.53027 · doi:10.1007/s11401-006-0400-4
[35] Yang, L., Injectivity radius for non-simply connected symmetric spaces via Cartan polyhedron, Osaka J. Math., 45, 2, 511-540 (2008) · Zbl 1145.53041
[36] YCor’s answer to the MathOverflow question On maximal closed connected subgroups of a compact connected semisimple Lie group? https://mathoverflow.net/q/336560 (version: 2019-07-19)
[37] Zhong, JQ; Yang, HC, On the estimate of the first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A, 27, 12, 1265-1273 (1984) · Zbl 0561.53046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.