×

The maximal regularity of the third-order differential equation and its applications. (English) Zbl 07861277

MSC:

34B16 Singular nonlinear boundary value problems for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] A. N.Kolmogorov, Über die beste Annäherung von Functionen einer gegebenen Functionenklasse, Ann. Math.37 (1936), 107-110. · Zbl 0013.34903
[2] M.Gregus, Third order linear differential equations, Reidel, Dordrecht, 1982.
[3] S.Padhi and S.Pati, Theory of third‐order differential equations. Springer, 2014, DOI 10.1007/978‐81‐322‐1614‐8. · Zbl 1308.34002
[4] C.Qian, On global stability of third‐order nonlinear differential equations, Nonlinear Anal.42 (2000), 651-661, DOI 10.1016/S0362‐546X(99)00120‐0. · Zbl 0969.34048
[5] D.Beldjerd and M.Remili, Boundedness and square integrability of solutions of certain third‐order differential equations, Math. Bohemica143 (2018), 377-389, DOI 10.21136/MB.2018.0029‐17. · Zbl 1463.34151
[6] P.Kunstmann and L.Weis, Maximal L_p regularity for parabolic equations, Fourier multiplier theorems and H^∞ functional calculus, In Functional analytic methods for evolution equations, M.Iannelli (ed.), R.Nagel (ed.), S.Piazzera (ed.) (eds.) Lecture Notes in Mathematics 1855, Springer, Berlin, 2004, 65-311. · Zbl 1097.47041
[7] W. N.Everitt and M.Giertz, Some properties of the domains of certain differential operators, Proc. Lond. Math. Soc.23 (1971), 301-324. · Zbl 0224.34018
[8] M. B.Muratbekov, M. M.Muratbekov, and K. N.Ospanov, Coercive solvability of odd‐order differential equations and its applications, Dokl. Math.82 (2010), 909-911, DOI 10.1134/S1064562410060189. · Zbl 1221.34029
[9] R. D.Akhmetkaliyeva, L.‐E.Persson, K.Ospanov, and P.Woll, Some new results concerning a class of third order differential equations, Appl. Anal.94 (2015), 419-434, DOI 10.1080/00036811.2014.898375. · Zbl 1308.34075
[10] К.Ospanov and M.Ospanov, Maximal regularity estimates and the solvability of nonlinear differential equations, Mathematics10 (2022), 1717, DOI 10.3390/math10101717.
[11] M.Otelbaev, Coercive estimates and separability theorems for elliptic equations in R^n, Proc. Steklov Inst. Math.161 (1984), 213-239. · Zbl 0556.35040
[12] K.Ospanov and A.Yesbayev, Solvability and maximal regularity results for a differential equation with diffusion coefficient, Turk. J. Math.44 (2020), 1304-1316, DOI 10.3906/mat‐2002‐87. · Zbl 1455.34014
[13] A.Kalybay, R.Oinarov, and Y.Sultanaev, Weighted second‐order differential inequality on set of compactly supported functions and its applications, Mathematics9 (2021), 2830, DOI 10.3390/math9212830.
[14] J. T.Dunford and N.Schwartz, Linear operators. Part II: Spectral theory. Self Adjoint operators in Hilbert space, John Wiley&Sons, 1963. · Zbl 0128.34803
[15] T.Kato, Perturbation theory for linear operators. Springer, 1995, DOI 10.1007/978‐3‐642‐66282‐9. · Zbl 0836.47009
[16] O. D.Apyshev and M.Otelbaev, The spectrum of a class of differential operators and some imbedding theorems, Math. USSR Izvestija.15 (1980), DOI 10.1070/IM1980v015n01ABEH001190. · Zbl 0446.47039
[17] M.Otelbaev, Two‐sided estimates for diameters and applications, Soviet Math, Dokl.17 (1976), no. 6, 1655-1659. · Zbl 0355.35022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.