×

On planar zero-diagonal and zero-trace iterated maps. (English) Zbl 1403.39018

Summary: We call an iterated map zero-diagonal, if it has a zero-diagonal Jacobi matrix for all \(x\), \(y\). Similarly, zero-trace iterated maps are the maps with zero-trace Jacobi matrix. In this paper, we present some of the geometric and algebraic properties of zero-diagonal planar maps. However, the main focus of this paper is the analysis of the zero-trace planar maps by linear transforming them to a zero-diagonal ones. Some sufficient conditions for the transformation are obtained. Stability for non-hyperbolic fixed points, two types of codim-2 bifurcations, and the local/global invariant manifolds for zero-diagonal and zero-trace maps are investigated.

MSC:

39B12 Iteration theory, iterative and composite equations
39A28 Bifurcation theory for difference equations
Full Text: DOI

References:

[1] Anderson, D. R.; Myran, N. G.; White, D. L., basins of attraction in a Cournot duopoly model of kopel, J. Differ. Equ. Appl., 11, 10, 879-887, (2005) · Zbl 1111.39010 · doi:10.1080/10236190512331333888
[2] Baron, K.; Jarczyk, W., recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math., 61, 1-2, 1-48, (2001) · Zbl 0972.39011 · doi:10.1007/s000100050159
[3] Bischi, G. I.; Mammana, C.; Gardini, L., multistability and cyclic attractors in duopoly games, Chaos Soliton. Fract., 11, 4, 543-564, (2000) · Zbl 0960.91017 · doi:10.1016/S0960-0779(98)00130-1
[4] Recherches sur les Principes Mathematiques de la Theorie des Richesses. Translated as Researches into the Mathematical Principles of the Theory of Wealth (1963): p. 1838
[5] Dana, R.-A.; Montrucchio, L., dynamic complexity in duopoly games, J. Econ. Theory., 40, 1, 40-56, (1986) · Zbl 0617.90104 · doi:10.1016/0022-0531(86)90006-2
[6] Dannan, F. M.; Elaydi, S. N.; Ponomarenko, V., stability of hyperbolic and nonhyperbolic fixed points of one-dimensional maps, J. Differ. Equ. Appl., 9, 5, 449-457, (2003) · Zbl 1054.47043 · doi:10.1080/1023619031000078315
[7] Elaydi, S., Discrete Chaos: With Applications in Science and Engineering, (2008), Chapman & Hall/CRC, London · Zbl 1153.39002
[8] Elsadany, A. A., dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization, Appl. Math. Comput., 294, 253-263, (2017) · Zbl 1411.91384
[9] Elsadany, A. A.; Matouk, A. E., dynamic Cournot duopoly game with delay, J. Complex Syst., 2014, (2014)
[10] Stability of a Certain 2-Dimensional Map with Cobweb Diagram, Computational Science and Its Applications – ICCSA’16: 16th International Conference, Beijing, China (2016), Proceedings, Part I, Springer International Publishing, pp. 45–53
[11] Kapcak, S.; Ufuktepe, U.; Elaydi, S., stability and invariant manifolds of a generalized beddington host-parasitoid model, J. Biol. Dyn., 7, 233-253, (2013) · Zbl 1448.92206 · doi:10.1080/17513758.2013.849764
[12] Kopel, M., simple and complex adjustment dynamics in Cournot duopoly model, Chaos Soliton. Fract., 7, 12, 2031-2048, (1996) · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[13] Kuczma, M.; Choczewski, B.; Ger, R., Iterative Functional Equations, (1990), Cambridge University Press, Cambridge · Zbl 0703.39005
[14] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, (1995), Springer-Verlag, New York · Zbl 0829.58029
[15] Kuznetsov, Y. A.; Meijer, H. G.; van Veen, L., the fold-flip bifurcation, Int. J. Bifurcat. Chaos, 14, 7, 2253-2282, (2004) · Zbl 1077.37515 · doi:10.1142/S0218127404010576
[16] Ma, J. H.; Tu, H., complexity of a duopoly game in the electricity market with delayed bounded rationality, Discrete. Dyn. Nat. Soc., (2012) · Zbl 1257.37054 · doi:10.1155/2012/698270
[17] Maskin, E.; Tirole, J., A theory of dynamic oligopoly, I: overview and quantity competition with large fixed costs, Econometrica J. Econ. Soc., 1, 549-569, (1988) · Zbl 0657.90029 · doi:10.2307/1911700
[18] Maskin, E.; Tirole, J., A theory of dynamic oligopoly, II: price competition, kinked demand curves, and Edgeworth cycles, Econometrica J. Econ. Soc., 1, 571-599, (1988) · Zbl 0664.90023 · doi:10.2307/1911701
[19] Murakami, K., stability for non-hyperbolic fixed points of scalar difference equations, J. Math. Anal. Appl., 310, 2, 492-505, (2005) · Zbl 1082.39008 · doi:10.1016/j.jmaa.2005.02.020
[20] Pfeiffer, G. A., the functional equation \(##?##\), Ann. Math., 20, 1, 13-22, (1918) · JFM 46.0524.02 · doi:10.2307/1967374
[21] Puu, T., chaos in duopoly pricing, Chaos Soliton. Fract., 1, 6, 573-581, (1991) · Zbl 0754.90015 · doi:10.1016/0960-0779(91)90045-B
[22] Sheng, Z.; Du, J.; Mei, Q.; Huang, T., new analyses of duopoly game with output lower limiters, Abstr. Appl. Anal., (2013) · Zbl 1273.91107 · doi:10.1155/2013/406743
[23] Tramontana, F.; Gardini, L.; Puu, T., global bifurcations in a piecewise-smooth Cournot duopoly game, Chaos Soliton. Fract., 43, 1-12, 15-24, (2010) · Zbl 1218.37068 · doi:10.1016/j.chaos.2010.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.