×

On scattering from the one-dimensional multiple Dirac delta potentials. (English) Zbl 1392.81213

Summary: In this paper, we propose a pedagogical presentation of the Lippmann-Schwinger equation as a powerful tool, so as to obtain important scattering information. In particular, we consider a one-dimensional system with a Schrödinger-type free Hamiltonian decorated with a sequence of \(N\) attractive Dirac delta interactions. We first write the Lippmann-Schwinger equation for the system and then solve it explicitly in terms of an \(N\times N\) matrix. Then, we discuss the reflection and the transmission coefficients for an arbitrary number of centres and study the threshold anomaly for the \(N=2\) and \(N=4\) cases. We also study further features like the quantum metastable states and resonances, including their corresponding Gamow functions and virtual or antibound states. The use of the Lippmann-Schwinger equation simplifies our analysis enormously and gives exact results for an arbitrary number of Dirac delta potentials.

MSC:

81U05 \(2\)-body potential quantum scattering theory
46F10 Operations with distributions and generalized functions
97M50 Physics, astronomy, technology, engineering (aspects of mathematics education)

References:

[1] Kronig R de L and Penney W G 1931 Quantum mechanics of electrons in crystal lattices Proc. R. Soc. A 130 499 · JFM 57.1587.02
[2] Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[3] Belloni M and Robinett R W 2014 The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics Phys. Rep.540 25 · Zbl 1357.81080
[4] Demkov Yu N and Ostrovskii V N 1988 Zero-range Potentials and Their Applications in Atomic Physics (New York: Plenum Press)
[5] Sahu B and Sahu B 2009 Phys. Lett. A 373 4033 · Zbl 1234.81073
[6] Lapidus I R 1982 Resonance scattering from a double δ-function potential Am. J. Phys.50 663-4
[7] Senn P 1988 Threshold anomalies in one dimensional scattering Am. J. Phys.56 916-21
[8] Berman P R 2013 Transmission resonances and Bloch states for a periodic array of delta function potentials Am. J. Phys.81 190
[9] Cordourier-Maruri G, De Coss R and Gupta V 2011 Transmission properties of the one-dimensional array of delta potentials Int. J. Mod. Phys. B 25 1349-58 · Zbl 1259.82148
[10] Ahmed Z, Kumar S, Sharma M and Sharma V 2016 Revisiting double Dirac delta potential Eur. J. Phys.37 045406 · Zbl 1344.81066
[11] Patil S H 2009 Quadrupolar, triple δ-function potential in one dimension Eur. J. Phys.30 629 · Zbl 1173.81311
[12] Barlette V E, Leite M M and Adhikari S K 2001 Integral equations of scattering in one dimension Am. J. Phys.69 1010 · Zbl 0965.81128
[13] Lessie D and Spadaro J 1986 One dimensional multiple scattering in quantum mechanics Am. J. Phys.54 909-13
[14] Hernández E, Jáuregui A and Mondragón A 2000 Degeneracy of resonances in a double barrier potential J. Phys. A: Math. Gen.33 4507 · Zbl 1004.81033
[15] Antoniou I E, Gadella M, Hernández E, Jáuregui A, Melnikov Yu, Mondragón A and Pronko G P 2001 Gamow vectors for barrier wells Chaos Solitons Fractals12 2719
[16] Espinosa M G and Kielanowski P 2008 Unstable quantum oscillator J. Phys: Conf. Ser.128 012037
[17] Alvarez J J, Gadella M, Heras F J H and Nieto M 2009 A one-dimensional model of resonances with a delta barrier and a mass jump Phys. Lett. A 373 4022-7 · Zbl 1234.81067
[18] Alvarez J J, Gadella M and Nieto L M 2011 A study of resonances in a one dimensional model with singular Hamiltonian and mass jump Int. J. Theor. Phys.50 2161-9 · Zbl 1226.81099
[19] Alvarez J J, Gadella M, Lara L P and Maldonado-Villamizar F H 2013 Unstable quantum oscillator with point interactions: Maverick resonances, antibound states and other surprises Phys. Lett. A 377 2510
[20] Taylor J R 1972 Scattering Theory: The Quantum Theory of Non-Relativistic Collisions (New York: John Wiley and Sons)
[21] Bohm A 1978 The Rigged Hilbert Space and Quantum Mechanics, Springer Lecture Notes in Physics 78 (New York: Springer) · Zbl 0388.46045
[22] Appel W 2007 Mathematics for Physics and Physicists (Princeton, NJ: Princeton University Press) · Zbl 1128.00002
[23] Gieres F 2000 Mathematical surprises and Dirac formalism in quantum mechanics Rep. Prog. Phys.63 1893
[24] Antoine J P 1969 Formalism and symmetry problems in quantum mechanics. i. General Dirac formalism J. Math. Phys.10 53 · Zbl 0172.56602
[25] Gadella M and Gómez F 2002 A unified mathematical formalism for the Dirac formulation of quantum mechanics Found. Phys.32 815
[26] Gadella M and Gómez G 2002 The Lippmann-Schwinger equations in the rigged Hilbert space J. Phys A: Math. Gen.35 8505 · Zbl 1052.81101
[27] de la Madrid R 2006 The rigged Hilbert space approach to the Lippmann-Schwinger equation: II. The analytic continuation of the Lippmann-Schwinger bras and kets J. Phys. A: Math. Gen.39 3981 · Zbl 1094.81052
[28] Ash R B and Novinger W P 2007 Complex Analysis (New York: Dover) · Zbl 1130.30001
[29] Griffiths D J 2005 Introduction to Quantum mechanics (Hoboken, NJ: Pearson Education)
[30] Rorres C 1974 Transmission coefficients and eigenvalues of a finite one-dimensional crystal SIAM J. Appl. Math.27 303 · Zbl 0294.34013
[31] Erman F, Gadella M, Tunalı S and Uncu H 2017 A singular one-dimensional bound state problem and its degeneracies Eur. Phys. J. Plus132 352
[32] Nussenzveig H M 1972 Causality and Dispersion Relations (New York: Academic)
[33] Bohm A 1986 Quantum Mechanics: Foundations and Applications (Berlin: Springer) · Zbl 0994.81502
[34] Galindo A and Pascual P 1990 Quantum mechanics, (New York: Springer) · Zbl 0824.00008
[35] Blatt J M and Weisskopf V F 1952 Theoretical Nuclear Physics (New York: Wiley) · Zbl 0049.14005
[36] Michel N, Nazarevicz W, Ploszajckzak M and Vertse T 2009 Shell model in the complex energy plane J. Phys. G: Nucl. Part. Phys.36 013101
[37] Id Betan R, Liotta R J, Sandulescu N and Vertse T 2004 A shell model representation with antibound states Phys. Lett. B 584 48
[38] Bohm A and Gadella M 1989 Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture Notes in Physics vol 348 (New York: Springer) · Zbl 0691.46051
[39] Civitarese O and Gadella M 2004 Physical and mathematical aspects of Gamow states Phys. Rep.396 41
[40] Nussenzveig H M 1959 The poles of the S-matrix of a rectangular potential well of barrier Nucl. Phys.11 499
[41] Zavin R and Moiseyev N 2004 One-dimensional symmetric rectangular well: from bound to resonance via self-orthogonal virtual state J. Phys. A: Math. Gen.37 4619 · Zbl 1056.81025
[42] Gelfand I M and Vilenkin N Y 1964 Generalized Functions: Applications to Harmonic Analysis (New York: Academic) · Zbl 0136.11201
[43] Roberts J E 1966 Rigged Hilbert spaces in quantum mechanics Commun. Math. Phys.3 98-119 · Zbl 0144.23404
[44] Melsheimer O 1974 Rigged Hilbert space formalism as extended mathematical formalism for quantum systems I. General theory J. Math. Phys.15 902-16
[45] Maurin K 1968 General Eigenfunction Expansions and Unitary Representations of Topological Groups, Monografie Matematyczn 48 (Warszawa: PWN-Polish Scientific Publishers) · Zbl 0185.39001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.