×

Phase organization of circadian oscillators in extended gate and oscillator models. (English) Zbl 1406.92020

Summary: The suprachiasmatic nuclei (SCN) control daily oscillations in physiology and behavior. The gate-oscillator model captures functional heterogeneity in SCN and has been successful in reproducing many features of SCN. This paper investigates the mechanism of phase organization in the gate-oscillator model and finds that only stable fixed points of the phase transition function are essential to phase organization. This obvious finding forms the basis for understanding the complex phase distribution in the gate-oscillator scheme. Extending the model with a dead zone of the phase transition function and the propagation delay of the gate signal which may represent the spatial structure of SCN, the author discusses how some features of experimentally reported phase distribution, such as the existence of anti-phase neurons and fixed phase difference between neurons, could be understood in the framework of the gate-oscillator model. The extended model shows clearly the way in which the interplay between the single-cell property and the property of the network organization influence the phase distribution of SCN neurons.

MSC:

92B25 Biological rhythms and synchronization
92C20 Neural biology
Full Text: DOI

References:

[1] Antle, M. C.; Silver, R., Orchestrating time: arrangements of the brain circadian clock, Trends in Neurosciences, 28, 145-151 (2005)
[2] Antle, M. C.; Foley, D. K.; Foley, N. C.; Silver, R., Gates and oscillators: a network model of the brain clock, Journal of Biological Rhythms, 18, 339 (2003)
[3] Antle, M. C.; Foley, N. C.; Foley, D. K.; Silver, R., Gates and oscillators II: zeitgebers and the network model of the brain clock, Journal of Biological Rhythms, 22, 14-25 (2007)
[4] Aton, S.; Colwell, C.; Harmar, A.; Waschek, J.; Herzog, E., Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons, Nature Neuroscience, 8, 476-483 (2005)
[5] Brown, T. M.; Banks, J. R.; Piggins, H. D., A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices, Journal of Neuroscience Methods, 156, 173-181 (2006)
[6] Brown, T. M.; Piggins, H. D., Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod, Journal of Biological Rhythms, 24, 44-54 (2009)
[7] Dardente, H.; Poirel, V.-J.; Klosen, P.; Pévet, P.; Masson-Pévet, M., Per and neuropeptide expression in the rat suprachiasmatic nuclei: compartmentalization and differential cellular induction by light, Brain Research, 958, 261-271 (2002)
[8] de la Iglesia, H. O.; Meyer, J.; Carpino, A.; Schwartz, W., Antiphase oscillation of the left and right suprachiasmatic nuclei, Science, 290, 799-801 (2000)
[9] Gonze, D.; Bernard, S.; Waltermann, C.; Kramer, A.; Herzel, H., Spontaneous synchronization of coupled circadian oscillators, Biophysical Journal, 89, 120-129 (2005)
[10] Hamada, T.; Antle, M. C.; Silver, R., Temporal and spatial expression patterns of canonical clock genes and colck-controlled genes in the suprachiasmatic nucleus, European Journal of Neuroscience, 19, 1741 (2004)
[11] Hamada, T.; LeSauter, J.; Lokshin, M.; Romero, M.; Yan, L.; Judith, M.; Silver, R., Calbindin influences response to photic input in suprachiasmatic nucleus, Journal of Neuroscience, 23, 26, 8820-8826 (2003)
[12] Hamada, T.; LeSauter, J.; Venuti, J.; Silver, R., Expression of period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker, Journal of Neuroscience, 21, 7742 (2001)
[13] Hastings, M. H.; Herzog, E. D., Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei, Journal of Biological Rhythms, 19, 400-413 (2004)
[14] Herzog, E. D.; Aton, S. J.; Numano, R.; Sakaki, Y.; Tei, H., Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons, Journal of Biological Rhythms, 19, 35-46 (2004)
[15] Hughes, A. T.L.; Guilding, C.; Lennox, L.; Samuels, R. E.; McMahon, D. G.; Piggins, H. D., Live imaging of altered period1expression in the suprachiasmatic nuclei of Vipr \(2^{−/−}\) mice, Journal of Neurochemistry, 106, 1646-1657 (2008)
[16] Inagaki, N.; Honma, S.; Ono, D.; Tanahashi, Y.; Honma, K.-i., Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity, Proceedings of the National Academy of Sciences USA, 104, 7664-7669 (2007)
[17] Indic, P.; Schwartz, W. J.; Herzog, E. D.; Foley, N. C.; Antle, M. C., Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus, Journal of Biological Rhythms, 22, 211 (2007)
[18] Indic, P.; Schwartz, W. J.; Paydarfar, D., Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with ‘split’ circadian rhythms, Journal of the Royal Society Interface, 5, 873-883 (2008)
[19] Jagota, A.; Horacio, O.; Schwartz, W., Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro, Nature Neuroscience, 3, 372-376 (2000)
[20] Jobst, E.; Allen, C., Calbindin neurons in the hamster suprachiasmatic nucleus do not exhibit a circadian variation in spontaneous firing rate, European Journal of Neuroscience, 16, 2469-2474 (2002)
[21] Karatsoreos, I. N.; Yan, L.; LeSauter, J.; Silver, R., Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus, Journal of Neuroscience, 24, 68-75 (2004)
[22] LeSauter, J.; Silver, R., Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity, Journal of Neuroscience, 19, 5574-5585 (1999)
[23] Liu, C.; Reppert, S. M., GABA synchronizes clock cells within the suprachiasmatic circadian clock, Neuron, 25, 123-128 (2000)
[24] Moore, R.; Speh, J.; Leak, R., Suprachiasmatic nucleus organization, Cell and Tissue Research, 309, 89-98 (2002)
[25] Moore, R. Y.; Silver, R., Suprachiasmatic nucleus organization, Chronobiology International, 15, 475-487 (1998)
[26] Ohta, H.; Yamazaki, S.; McMahon, D. G., Constant light desynchronizes mammalian clock neurons, Nature Neuroscience, 8, 267-269 (2005)
[27] Okamura, H., Clock genes in cell clocks: roles, actions, and mysteries, Journal of Biological Rhythms, 19, 388-399 (2004)
[28] Prolo, L. M.; Takahashi, J. S.; Herzog, E. D., Circadian rhythm generation and entrainment in astrocytes, Journal of Neuroscience, 25, 404-408 (2005)
[29] Quintero, J.; Kuhlman, S.; McMahon, D., The biological clock nucleus: a multiphasic oscillator network regulated by light, Journal of Neuroscience, 23, 8070-8076 (2003)
[30] Reppert, S. M.; Weaver, D. R., Molecular analysis of mammalian circadian rhythms, Annual Review of Physiology, 63, 647-676 (2001)
[31] Schaap, J.; Albus, H.; vanderLeest, H.; Eilers, P.; Detari, L.; Meijer, J., Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding, Proceedings of the National Academy of Sciences, 100, 15994-15999 (2003)
[32] vanderLeest, H. T.; Rohling, J. H.T.; Michel, S.; Meijer, J. H., Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization, Plos One, 4, e4976 (2009)
[33] Weaver, D. R., The suprachiasmatic nucleus: A 25-year retrospective, Journal of Biological Rhythms, 13, 100-112 (1998)
[34] Welsh, D. K., Gate cells see the light, Journal of Biological Rhythms, 22, 26-28 (2007)
[35] Yamaguchi, S.; Isejima, H.; Matsuo, T.; Okura, R.; Yagita, K.; Kobayashi, M.; Okamura, H., Synchronization of cellular clocks in the suprachiasmatic nucleus, Science, 302, 1408-1412 (2003)
[36] Yan, L.; Foley, N.; Bobula, J.; Kriegsfeld, L.; Silver, R., Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters, Journal of Neuroscience, 25, 9017-9026 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.