×

A minimal model for vertical shear instability in protoplanetary accretion disks. (English) Zbl 1482.85014

Summary: The vertical shear instability is an axisymmetric effect suggested to drive turbulence in the magnetically inactive zones of protoplanetary accretion disks. Here we examine its physical mechanism in analytically tractable “minimal models” in three settings that include a uniform density fluid, a stratified atmosphere, and a shearing-box section of a protoplanetary disk. Each of these analyses show that the vertical shear instability’s essence is similar to the slantwise convective symmetric instability in the mid-latitude Earth atmosphere, in the presence of vertical shear of the baroclinic jet stream, as well as mixing in the top layers of the Gulf Stream. We show that in order to obtain instability, the fluid parcels’ slope should exceed the slope of the mean absolute momentum in the disk radial-vertical plane. We provide a detailed and mutually self-consistent physical explanation from three perspectives: in terms of angular momentum conservation, as a dynamical interplay between a fluid’s radial and azimuthal vorticity components, and from an energy perspective involving a generalised Solberg-Høiland Rayleigh condition. Furthermore, we explain why anelastic dynamics yields oscillatory unstable modes and isolate the oscillation mechanism from the instability one.

MSC:

85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
76W05 Magnetohydrodynamics and electrohydrodynamics

References:

[1] Arlt, R.; Urpin, V., Simulations of vertical shear instability in accretion discs, Astron. Astrophys., 426, 755-765 (2004) · Zbl 1075.85004
[2] Barker, A. J.; Latter, H. N., On the vertical-shear instability in astrophysical discs, Mon. Not. R. Astron. Soc., 450, 21-37 (2015)
[3] Chen, K.; Lin, M. K., How efficient is the streaming instability in viscous protoplanetary disks?, Astrophys. J., 891, 132 (2020)
[4] Fricke, K., Instabilität stationärer rotation in sternen, Z. Phys., 68, 317 (1968)
[5] Goldreich, P.; Schubert, G., Differential rotation in stars, Astrophys. J., 150, 571 (1967)
[6] Gole, D. A.; Simon, J. B.; Li, R.; Youdin, A. N.; Armitage, P. J., Turbulence regulates the rate of planetesimal formation via gravitational collapse, Astrophys. J., 904, 132 (2020)
[7] Hartlep, T.; Cuzzi, J. N., Cascade model for planetesimal formation by turbulent clustering, Astrophys. J., 892, 120 (2020)
[8] Heifetz, E.; Farrell, B. F., Non-normal growth in symmetric shear flow, Q. J. R. Meteorol. Soc., 134, 1627-1633 (2008)
[9] Holton, J. R.; Hakim, G. J., An Introduction to Dynamic Meteorology (2012), Academic Press
[10] Johansen, A.; Oishi, J. S.; Mac Low, M. M.; Klahr, H.; Henning, T.; Youdin, A., Rapid planetesimal formation in turbulent circumstellar disks, Nature, 448, 1022-1025 (2007)
[11] Knobloch, E.; Spruit, H., Stability of differential rotation in stars, Astron. Astrophys., 113, 261-268 (1982) · Zbl 0519.76039
[12] Latter, H. N.; Papaloizou, J., Vortices and the saturation of the vertical shear instability in protoplanetary discs, Mon. Not. R. Astron. Soc., 474, 3110-3124 (2018)
[13] Lin, M. K., Dust settling against hydrodynamic turbulence in protoplanetary discs, Mon. Not. R. Astron. Soc., 485, 5221-5234 (2019)
[14] Lin, M. K.; Youdin, A. N., Cooling requirements for the vertical shear instability in protoplanetary disks, Astron. Astrophys., 811, 17 (2015)
[15] Lin, M. K.; Youdin, A. N., A thermodynamic view of dusty protoplanetary disks, Astrophys. J., 849, 129 (2017)
[16] Lyra, W.; Umurhan, O. M., The initial conditions for planet formation: turbulence driven by hydrodynamical instabilities in disks around young stars, Publ. Astron. Soc. Pac, 131 (2019)
[17] Malygin, M. G.; Klahr, H.; Semenov, D.; Henning, T.; Dullemond, C. P., Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence, Astron. Astrophys., 605, A30 (2017)
[18] Manger, N.; Klahr, H., Vortex formation and survival in protoplanetary discs subject to vertical shear instability, Mon. Not. R. Astron. Soc., 480, 2125-2136 (2018)
[19] McNally, C. P.; Pessah, M. E., On vertically global, horizontally local models for astrophysical disks, Astrophys. J., 811, 121 (2015)
[20] Nelson, R. P.; Gressel, O.; Umurhan, O. M., Linear and non-linear evolution of the vertical shear instability in accretion discs, Mon. Not. R. Astron. Soc., 435, 2610-2632 (2013)
[21] Pfeil, T.; Klahr, H., Mapping the conditions for hydrodynamic instability on steady-state accretion models of protoplanetary disks, Astrophys. J., 871, 150 (2019)
[22] Richard, S.; Nelson, R. P.; Umurhan, O. M., Vortex formation in protoplanetary discs induced by the vertical shear instability, Mon. Not. R. Astron. Soc., 456, 3571-3584 (2016)
[23] Schäfer, U.; Johansen, A.; Banerjee, R., The coexistence of the streaming instability and the vertical shear instability in protoplanetary disks, Astron. Astrophys., 635, A190 (2020)
[24] Stamper, M. A.; Taylor, J. R., The transition from symmetric to baroclinic instability in the Eady model, Ocean Dyn., 67, 65-80 (2017)
[25] Stoll, M. H.R.; Kley, W., Vertical shear instability in accretion disc models with radiation transport, Astron. Astrophys., 572, A77 (2014)
[26] Stoll, M. H.; Kley, W., Particle dynamics in discs with turbulence generated by the vertical shear instability, Astron. Astrophys., 594, A57 (2016)
[27] Thomas, L. N.; Taylor, J. R.; Ferrari, R.; Joyce, T. M., Symmetric instability in the Gulf Stream, Deep Sea Res. Part II Top. Stud. Oceanogr., 91, 96-110 (2013)
[28] Umurhan, O.M., Nelson, R.P. and Gressel, O., Breathing life into dead-zones, in European Physical Journal Web of Conferences, Vol. 46 of European Physical Journal Web of Conferences, April 2013, p. 03003.
[29] Umurhan, O. M.; Nelson, R. P.; Gressel, O., Linear analysis of the vertical shear instability: outstanding issues and improved solutions, Astron. Astrophys., 586, A33 (2016)
[30] Umurhan, O. M.; Estrada, P. R.; Cuzzi, J. N., Streaming instability in turbulent protoplanetary disks, Astron. Astrophys., 895, 4 (2020)
[31] Urpin, V.; Brandenburg, A., Magnetic and vertical shear instabilities in accretion discs, Mon. Not. R. Astron. Soc., 294, 399-406 (1998)
[32] Youdin, A. N.; Goodman, J., Streaming instabilities in protoplanetary disks, Astron. Astrophys., 620, 459-469 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.