×

A classification of invariant knots. (English) Zbl 0666.57017

An invariant knot is a triple \((J^{2n+1},K^{2n-1};T)\) where \((J,K)\) is an oriented simple knot (smooth or PL), \(n\geq 2\), and \(T\) is a free \(\mathbb Z_ m\)-action on the ambient sphere \(J\) under which \(K\) is invariant. Such knots \((J,K)\) were classified by J. Levine in terms of the Seifert matrix modulo \(S\)-equivalence, and here such invariant knots are classified in terms of the quotient normal bundle \(\nu (K/T,J/T)\) and something called the derived Seifert pairing \(\beta\). It turns out that the quotient under \(T\) of the knot exterior \(X\) is also a knot exterior \(X^*\), and \(\beta\) is the Seifert pairing associated with \(X^*\). It is shown that \(\nu\) and \(\beta\) determine the triple \((J,K;T)\) up to equivariant homeomorphism.
The author also characterises the matrices which arise as Seifert matrices of the knot \((J,K)\) where \((J,K;T)\) is an invariant knot. Since \(X^*\) is a knot exterior, it follows that \((J,K)\) is in fact a branched cyclic cover of a simple knot, and so this work is related to that of P. M. Strickland [Proc. Am. Math. Soc. 90, 440–449 (1984; Zbl 0543.57012)].

MSC:

57Q45 Knots and links in high dimensions (PL-topology) (MSC2010)
57S17 Finite transformation groups
57M12 Low-dimensional topology of special (e.g., branched) coverings

Citations:

Zbl 0543.57012
Full Text: DOI

References:

[1] W. Browder, Diffeomorphisms of \(1\)-connected manifolds , Trans. Amer. Math. Soc. 128 (1967), 155-163. JSTOR: · Zbl 0166.19702 · doi:10.2307/1994525
[2] W. Browder and J. Levine, Fibering manifolds over a circle , Comment. Math. Helv. 40 (1966), 153-160. · Zbl 0134.42802 · doi:10.1007/BF02564368
[3] S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds , Ann. of Math. (2) 99 (1974), 277-348. JSTOR: · Zbl 0279.57011 · doi:10.2307/1970901
[4] M. S. Farber, Isotopy types of knots of codimension two , Trans. Amer. Math. Soc. 261 (1980), no. 1, 185-209. · Zbl 0513.57007 · doi:10.2307/1998325
[5] C. Kearton, Blanchfield duality and simple knots , Trans. Amer. Math. Soc. 202 (1975), 141-160. · Zbl 0305.57016 · doi:10.2307/1997303
[6] C. Kearton, An algebraic classification of some even-dimensional knots , Topology 15 (1976), no. 4, 363-373. · Zbl 0335.57012 · doi:10.1016/0040-9383(76)90030-6
[7] M. A. Kervaire, Les nœuds de dimensions supérieures , Bull. Soc. Math. France 93 (1965), 225-271. · Zbl 0141.21201
[8] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I , Ann. of Math. (2) 77 (1963), 504-537. JSTOR: · Zbl 0115.40505 · doi:10.2307/1970128
[9] R. K. Lashof and J. L. Shaneson, Classification of knots in codimension two , Bull. Amer. Math. Soc. 75 (1969), 171-175. · Zbl 0198.28701 · doi:10.1090/S0002-9904-1969-12197-X
[10] J. Levine, Unknotting spheres in codimension two , Topology 4 (1965), 9-16. · Zbl 0134.42803 · doi:10.1016/0040-9383(65)90045-5
[11] J. Levine, Knot cobordism groups in codimension two , Comment. Math. Helv. 44 (1969), 229-244. · Zbl 0176.22101 · doi:10.1007/BF02564525
[12] J. Levine, An algebraic classification of some knots of codimension two , Comment. Math. Helv. 45 (1970), 185-198. · Zbl 0211.55902 · doi:10.1007/BF02567325
[13] J. W. Milnor, Infinite cyclic coverings , Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115-133. · Zbl 0179.52302
[14] J. Milnor, Singular points of complex hypersurfaces , Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J., 1968. · Zbl 0184.48405
[15] J. L. Shaneson, Embeddings with codimension two of spheres in spheres and \(H\)-cobordisms of \(S^1\times S^3\) , Bull. Amer. Math. Soc. 74 (1968), 972-974. · Zbl 0167.21602 · doi:10.1090/S0002-9904-1968-12107-X
[16] N. W. Stoltzfus, Unraveling the integral knot concordance group , Mem. Amer. Math. Soc. 12 (1977), no. 192, iv+91. · Zbl 0366.57005
[17] N. W. Stoltzfus, Equivariant concordance of invariant knots , Trans. Amer. Math. Soc. 254 (1979), 1-45. · Zbl 0411.57021 · doi:10.2307/1998257
[18] C. T. C. Wall, Classification of \((n-1)\)-connected \(2n\)-manifolds , Ann. of Math. (2) 75 (1962), 163-189. JSTOR: · Zbl 0218.57022 · doi:10.2307/1970425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.