×

Regularity of free boundary minimal surfaces in locally polyhedral domains. (English) Zbl 1498.49076

The authors consider the regularity of free-boundary minimal surfaces \(M\) inside some given domain \(\Omega\). Under a \(C^2\) regularity assumption on \(\partial \Omega\), Grüter and Jost [M. Grüter and J. Jost, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 13, 129–169 (1986; Zbl 0615.49018)] proved an Allard-type regularity theorem stating that if \(M\) is sufficiently varifold close to a free-boundary plane, then nearby \(M\) is a \(C^{1,\alpha}\) graph over such a plane. In the current paper, the authors investigate whether a similar property holds when \(\Omega\) is only piecewise \(C^2\) regular, refer to Theorem 1.1. Their results also recover known results for wedges.

MSC:

49Q05 Minimal surfaces and optimization
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Citations:

Zbl 0615.49018

References:

[1] Allard, W. K.On the first variation of a varifold. Ann. of Math.(2) 95 (1972), 417-491. doi: https://doi.org/10.2307/1970934. · Zbl 0252.49028 · doi:10.2307/1970934
[2] Allard, W. K. On the first variation of a varifold: boundary behavior. Ann. of Math. (2)101 (1975), 418-446. doi: 10.2307/1970934. · Zbl 0319.49026
[3] Brakke, K. A.Minimal surfaces, corners, and wires. J. Geom. Anal.2 (1992), no. 1, 11-36. doi: https://doi.org/10.1007/BF02921333. · Zbl 0725.53013 · doi:10.1007/BF02921333
[4] Concus, P.; Finn, R.On capillary free surfaces in the absence of gravity. Acta Math.132 (1974), 177-198. doi: https://doi.org/10.1007/BF02392113. · Zbl 0382.76003 · doi:10.1007/BF02392113
[5] Concus, P.; Finn, R.Capillary wedges revisited. SIAM J. Math. Anal.27 (1996), no. 1, 56-69. doi: https://doi.org/10.1137/S0036141093247482. · Zbl 0843.76012 · doi:10.1137/S0036141093247482
[6] Courant, R.Dirichlet’s principle, conformal mapping, and minimal surfaces. Springer‐Verlag, New York‐Heidelberg, 1977. With an appendix by M. Schiffer. Reprint of the 1950 original. · Zbl 0354.30012
[7] Coxeter, H. S. M. Discrete groups generated by reflections. Ann. of Math. (2)35 (1934), no. 3, 588-621. doi: 10.2307/1968753. · JFM 60.0898.02
[8] De Philippis, G.; Maggi, F.Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law. Arch. Ration. Mech. Anal.216 (2015), no. 2, 473-568. doi: https://doi.org/10.1007/s00205‐014‐0813‐2. · Zbl 1321.35158 · doi:10.1007/s00205‐014‐0813‐2
[9] Edelen, N. Notes on free‐boundary varifolds Available at: http://nedelen.science.nd.edu/fb‐varifold‐notes.pdf
[10] Edelen, N.; Spolaor, L.Regularity of minimal surfaces near quadratic cones (2019). arXiv: 1910.00441
[11] Gergonne, J.Questions proposées. Ann. Math. Pure Appl.7 (1816), no. 156, 99-100.
[12] Gromov, M.Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math.12 (2014), no. 8, 1109-1156. doi: https://doi.org/10.2478/s11533‐013‐0399‐1. · Zbl 1315.53027 · doi:10.2478/s11533‐013‐0399‐1
[13] Gruter, M.Optimal regularity for codimension one minimal surfaces with a free boundary. Man. Math.58 (1987), 295-343. doi: https://doi.org/10.1007/BF01165891. · Zbl 0609.35012 · doi:10.1007/BF01165891
[14] Grüter, M.; Hildebrandt, S.; Nitsche, J. C. C.On the boundary behavior of minimal surfaces with a free boundary which are not minima of the area. Manuscripta Math.35 (1981), no. 3, 387-410. doi: https://doi.org/10.1007/BF01263271. · Zbl 0483.49037 · doi:10.1007/BF01263271
[15] Gruter, M.; Jost, J.Allard type regularity results for varifolds with free boundaries. Ann. Sc. Norm. Super. Pisa Cl. Sci.(5) 13 (1986), 129-169. Available at: http://eudml.org/doc/83971. · Zbl 0615.49018
[16] Hardt, R.; Simon, L. Boundary Regularity and Embedded Solutions for the Oriented Plateau Problem. Ann. of Math. (2)110 (1979), 439-486. doi: 10.2307/1971233. · Zbl 0457.49029
[17] Hildebrandt, S.Boundary behavior of minimal surfaces. Arch. Rational Mech. Anal.35 (1969), 47-82. doi: https://doi.org/10.1007/BF00248494. · Zbl 0183.39402 · doi:10.1007/BF00248494
[18] Hildebrandt, S.; Nitsche, J. C. C.Minimal surfaces with free boundaries. Acta Math.143 (1979), no. 3‐4, 251-272. doi: https://doi.org/10.1007/BF02392096. · Zbl 0444.49035 · doi:10.1007/BF02392096
[19] Hildebrandt, S.; Sauvigny, F.Minimal surfaces in a wedge. I. Asymptotic expansions. Calc. Var. Partial Differential Equations5 (1997), no. 2, 99-115. doi: https://doi.org/10.1007/s005260050061. · Zbl 0920.49024 · doi:10.1007/s005260050061
[20] Hildebrandt, S.; Sauvigny, F.Minimal surfaces in a wedge. II. The edge‐creeping phenomenon. Arch. Math. (Basel)69 (1997), no. 2, 164-176. doi: https://doi.org/10.1007/s000130050106. · Zbl 0920.49025 · doi:10.1007/s000130050106
[21] Hildebrandt, S.; Sauvigny, F.Minimal surfaces in a wedge. III. Existence of graph solutions and some uniqueness results. J. Reine Angew. Math.514 (1999), 71-101. doi: https://doi.org/10.1515/crll.1999.073. · Zbl 0940.49024 · doi:10.1515/crll.1999.073
[22] Hildebrandt, S.; Sauvigny, F.Minimal surfaces in a wedge. IV. Hölder estimates of the Gauss map and a Bernstein theorem. Calc. Var. Partial Differential Equations8 (1999), no. 1, 71-90. doi: https://doi.org/10.1007/s005260050117. · Zbl 0957.49025 · doi:10.1007/s005260050117
[23] Jost, J.Continuity of minimal surfaces with piecewise smooth free boundaries. Math. Ann.276 (1987), no. 4, 599-614. doi: https://doi.org/10.1007/BF01456989. · Zbl 0596.53006 · doi:10.1007/BF01456989
[24] Kagaya, T.; Tonegawa, Y.A fixed contact angle condition for varifolds. Hiroshima Math. J.47 (2017), no. 2, 139-153. Available at: http://projecteuclid.org/euclid.hmj/1499392823. · Zbl 1405.49033
[25] Lewy, H.On mimimal surfaces with partially free boundary. Comm. Pure Appl. Math.4 (1951), 1-13. doi: https://doi.org/10.1002/cpa.3160040102. · doi:10.1002/cpa.3160040102
[26] Lewy, H.On the boundary behavior of minimal surfaces. Proc. Nat. Acad. Sci. U.S.A.37 (1951), 103-110. doi: https://doi.org/10.1073/pnas.37.2.103. · Zbl 0042.15702 · doi:10.1073/pnas.37.2.103
[27] Li, C. The dihedral rigidity conjecture for n‐prisms (2019). ArXiv:1907.03855.
[28] Li, C.A polyhedron comparison theorem for 3‐manifolds with positive scalar curvature. Invent. Math.219 (2020), no. 1, 1-37. doi: https://doi.org/10.1007/s00222‐019‐00895‐0. · Zbl 1440.53049 · doi:10.1007/s00222‐019‐00895‐0
[29] Maggi, F.Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2012. · Zbl 1255.49074
[30] Michael, J. H.; Simon, L. M.Sobolev and mean‐value inequalities on generalized submanifolds of Rn. Communications on Pure and Applied Mathematics26 (1973), no. 3, 361-379. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160260305. · Zbl 0256.53006
[31] Nitsche, J. C. C.Stationary partitioning of convex bodies. Arch. Rational Mech. Anal.89 (1985), no. 1, 1-19. doi: https://doi.org/10.1007/BF00281743. · Zbl 0572.52005 · doi:10.1007/BF00281743
[32] Schwarz, H.Fortgesetzte Untersuchugen über spezielle Minimalflächen. Monatsberichte der Königlichen Akad. Wiss. Berlin (1872), 3-27. · JFM 05.0412.02
[33] Simon, L.Regularity of capillary surfaces over domains with corners. Pacific J. Math.88 (1980), no. 2, 363-377. Available at: https://projecteuclid.org:443/euclid.pjm/1102779520. · Zbl 0467.35022
[34] Simon, L.Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. · Zbl 0546.49019
[35] Simon, L.Cylindrical tangent cones and the singular set of minimal submanifolds. J. Differential Geom.38 (1993), no. 3, 585-652. Available at: http://projecteuclid.org/euclid.jdg/1214454484. · Zbl 0819.53029
[36] Simons, J.Minimal varieties in riemannian manifolds. Ann. of Math.(2) 88 (1968), 62-105. doi: https://doi.org/10.2307/1970556. · Zbl 0181.49702 · doi:10.2307/1970556
[37] Struwe, M.On a free boundary problem for minimal surfaces. Invent. Math.75 (1984), no. 3, 547-560. doi: https://doi.org/10.1007/BF01388643. · Zbl 0537.35037 · doi:10.1007/BF01388643
[38] Taylor, J.Boundary regularity for solutions to various capillarity and free boundary problems. Comm. Partial Differ. Equ.2 (1977), 323–357. doi: https://doi.org/10.1080/03605307708820033. · Zbl 0357.35010 · doi:10.1080/03605307708820033
[39] Taylor, J. E. The structure of singularities in solutions to ellipsoidal variational problems with constraints in R^3. Ann. of Math. (2)103 (1976), no. 3, 541-546. doi: 10.2307/1970950. · Zbl 0335.49033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.