×

Variable transformations and Gauss-Legendre quadrature for integrals with endpoint singularities. (English) Zbl 1209.65031

The author studies the computation of integrals of functions \(f(x)\) that are enough differentiable in \((0,1)\) but have algebraic singularities at one or both of the endpoints \(x=0\) and \(x=1\), by combining a suitable variable transformation such that the transformed integrand has weaker singularities than those of \(f(x)\). He gives a computable representative of this class of methods and several numerical examples that confirm the theoretical results.

MSC:

65D32 Numerical quadrature and cubature formulas
65B15 Euler-Maclaurin formula in numerical analysis
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
41A55 Approximate quadratures
Full Text: DOI

References:

[1] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. · Zbl 0171.38503
[2] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. · Zbl 0537.65020
[3] Masao Iri, Sigeiti Moriguti, and Yoshimitsu Takasawa, On a certain quadrature formula, J. Comput. Appl. Math. 17 (1987), no. 1-2, 3 – 20. · Zbl 0616.65023 · doi:10.1016/0377-0427(87)90034-3
[4] Peter R. Johnston, Application of sigmoidal transformations to weakly singular and near-singular boundary element integrals, Internat. J. Numer. Methods Engrg. 45 (1999), no. 10, 1333 – 1348. , https://doi.org/10.1002/(SICI)1097-0207(19990810)45:103.3.CO;2-H · Zbl 0935.65130
[5] Peter R. Johnston, Semi-sigmoidal transformations for evaluating weakly singular boundary element integrals, Internat. J. Numer. Methods Engrg. 47 (2000), no. 10, 1709 – 1730. , https://doi.org/10.1002/(SICI)1097-0207(20000410)47:103.0.CO;2-V · Zbl 0966.65093
[6] Теоретико-числовые методы в приближенном анализе, Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1963 (Руссиан). · Zbl 0115.11703
[7] G. Monegato and L. Scuderi, Numerical integration of functions with boundary singularities, J. Comput. Appl. Math. 112 (1999), no. 1-2, 201 – 214. Numerical evaluation of integrals. · Zbl 0940.65027 · doi:10.1016/S0377-0427(99)00230-7
[8] G. Monegato and I. H. Sloan, Numerical solution of the generalized airfoil equation for an airfoil with a flap, SIAM J. Numer. Anal. 34 (1997), no. 6, 2288 – 2305. · Zbl 0901.76060 · doi:10.1137/S0036142995295054
[9] Masatake Mori, An IMT-type double exponential formula for numerical integration, Publ. Res. Inst. Math. Sci. 14 (1978), no. 3, 713 – 729. · Zbl 0402.65012 · doi:10.2977/prims/1195188835
[10] T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math. Comp. 18 (1964), 245 – 253. · Zbl 0141.13903
[11] Avram Sidi, A new variable transformation for numerical integration, Numerical integration, IV (Oberwolfach, 1992) Internat. Ser. Numer. Math., vol. 112, Birkhäuser, Basel, 1993, pp. 359 – 373. · Zbl 0791.41027
[12] Avram Sidi, Extension of a class of periodizing variable transformations for numerical integration, Math. Comp. 75 (2006), no. 253, 327 – 343. · Zbl 1103.65029
[13] Avram Sidi, A novel class of symmetric and nonsymmetric periodizing variable transformations for numerical integration, J. Sci. Comput. 31 (2007), no. 3, 391 – 417. · Zbl 1133.65013 · doi:10.1007/s10915-006-9110-z
[14] Avram Sidi, Asymptotic expansions of Gauss-Legendre quadrature rules for integrals with endpoint singularities, Math. Comp. 78 (2009), no. 265, 241 – 253. · Zbl 1198.65048
[15] Avram Sidi, Further extension of a class of periodizing variable transformations for numerical integration, J. Comput. Appl. Math. 221 (2008), no. 1, 132 – 149. · Zbl 1161.65019 · doi:10.1016/j.cam.2007.10.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.