×

From zero crossings to quantile-frequency analysis of time series with an application to nondestructive evaluation. (English) Zbl 07886562

MSC:

62-XX Statistics

Software:

R; foreach; e1071
Full Text: DOI

References:

[1] BezdelW, ChandlerH. Results of an analysis and recognition of vowels by computer using zero‐crossing data. Proc IEE. 1966;112(11):2060‐2066.
[2] LauY, ChanC. Speech recognition based on zero crossing rate and energy. IEEE Trans Acoust Speech Signal Process. 1985;33(1):320‐323.
[3] PetrantonakisP, HadjileontiadisL. Emotion recognition from EEG using higher order crossing. IEEE Trans Inf Technol Biomed. 2010;14(2):186‐197.
[4] ScarrR. Zero crossings as a means of obtaining spectral information in speech analysis. IEEE Trans Audio Electroacoust. 1968;16(2):247‐255.
[5] WassonD, DonaldsonR. Speech amplitude and zero crossings for automated identification of human speakers. IEEE Trans Acoust Speech Signal Process. 1975;23(4):390‐392.
[6] KedemB. Binary Time Series. New York, NY: Dekker; 1980. · Zbl 0424.62062
[7] KedemB. Time Series Analysis by Higher Order Crossings. New York, NY: IEEE Press; 1994. · Zbl 0818.62077
[8] KedemB. Spectral analysis and discrimination by zero‐crossings. Proc IEEE. 1986;74(11):1477‐1493.
[9] LiTH. Discrimination of time series by parametric filtering. J Am Stat Assoc. 1996;91(433):284‐293. · Zbl 0871.62075
[10] LiTH. Time series characterization, Poisson integral, and robust divergence measures. Technometrics. 1997;39(4):357‐371. · Zbl 0935.62104
[11] LiTH. Time‐correlation analysis of nonstationary time series. J Time Ser Anal. 1998;19(1):47‐67. · Zbl 0902.62107
[12] PriestleyM. Spectral Analysis and Time Series. San Diego, CA: Academic Press; 1983.
[13] LiTH. Laplace periodogram for time series analysis. J Am Stat Assoc. 2008;103(482):757‐768. · Zbl 1471.62471
[14] LiTH. Quantile periodogram. J Am Stat Assoc. 2012;103(482):757‐768. · Zbl 1471.62471
[15] KoenkerR. Quantile Regression. Cambridge, UK: Cambridge University Press; 2005. · Zbl 1111.62037
[16] LiTH. Quantile periodogram and time‐dependent variance. J Time Ser Anal. 2014;35(4):322‐340. · Zbl 1311.62159
[17] LiTH. Quantile‐frequency analysis and spectral divergence metrics for diagnostic checks of time series with nonlinear dynamics. arXiv:1908.02545. 2019.
[18] JonesJ. Hard‐limiting of two signals in random noise. IEEE Trans J Time Ser Anal. 1963;9(1):34‐42. · Zbl 0126.35905
[19] HinichM. Estimation of spectra after hard clipping of Gaussian processes. Technometrics. 1967;9(3):391‐400.
[20] DavisR, MikoschA. The extremogram: a correlogram for extreme events. Bernoulli. 2009;15(4):977‐1009. · Zbl 1200.62104
[21] HagemannA. Robust spectral analysis. arXiv:1111.1965. 2013.
[22] LiTH. A robust periodogram for high‐resolution spectral analysis. Signal Processing. 2010;90(7):2133‐1240. · Zbl 1194.94105
[23] LiTH. Time Series with Mixed Spectra. Boca Raton, FL: CRC Press; 2013.
[24] DetteH, HallinM, KleyT, VolgushevS. Of copulas, quantiles, ranks and spectra: an l_1‐approach to spectral analysis. Bernoulli. 2015;21(2):781‐831. · Zbl 1337.62286
[25] FajardoF, ReisenV, Lévy‐LeducC, TaqquM. M‐periodogram for the analysis of long‐range‐dependent time series. Stat J Theor Appl Stat. 2018;52(3):665‐683. · Zbl 1408.62146
[26] JordangerL, TjøstheimD. Nonlinear spectral analysis via the local gaussian correlation. arXiv:1708.02166. 2017.
[27] LimY, OhHS. Composite quantile periodogram for spectral analysis. J Time Ser Anal. 2016;37(2):195‐221. · Zbl 1417.62263
[28] GoodfellowI, BengioY, CourvilleA. Deep Learning. Cambridge, MA: MIT Press; 2016. · Zbl 1373.68009
[29] ChenT, SunY, LiTH. A semiparametric estimation algorithm for the quantile spectrum with an application to earthquake classification using convolutional neural network. arXiv:1910.07155. 2019.
[30] HastieT, TibshiraniR, FriedmanJ. The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd ed. New York, NY: Springer; 2008.
[31] RamsayJ, SilvermanB. Functional Data Analysis. 2nd ed. New York, NY: Springer; 2010.
[32] KedemB, SludE. Time series discrimination by higher order crossings. Ann Stat. 1982;10(3):786‐794. · Zbl 0515.62084
[33] WestonS. Using the foreach package. https://cran.r-project.org/web/packages/foreach/vignettes/foreach.pdf. 2019.
[34] LiTH. On robust spectral analysis by least absolute deviations. J Time Ser Anal. 2012;33(2):298‐303. · Zbl 1300.62090
[35] LoèveM. Second order properties. In: Probability Theory II. 4th ed. New York, NY: Springer; 1978:chap XI.
[36] BrockwellP, DavisR. Time Series: Theory and Methods. 2nd ed. New York, NY: Springer; 1991. · Zbl 0709.62080
[37] FriedmanJ. A Variable Span Smoother. Technical Report. Stanford, CA; Department of Statistics, Stanford University; 1984.
[38] AbedinM, JohnstonP, PrabhuD. Disbond detection using peak amplitude of pulse‐echo signals for various thicknesses and transducer frequencies. In: ThompsonD (ed.), ChimentiD (ed.), eds. Review of Progress in Quantitative Nondestructive Evaluation. Vol. 12. New York, NY: Plenum Press; 1993:1539‐1546.
[39] AllinJ. Disbond Detection in Adhesive Joints Using Low‐Frequency Ultrasound [PhD dissertation]. London, UKDepartment of Mechanical Engineering, University of London; 2002.
[40] CernigliaD, MontinaroN, NigrelliV. Detection of disbonds in multi‐layer structures by laser‐based ultrasonic technique. J Adhes. 2008;84(10):811‐829.
[41] DuttaD. Ultrasonic Techniques for Baseline‐Free Damage Detection in Structures [PhD dissertation]. Pittsburgh, PA: Department of Civil and Environmental Engineering, Carnegie Mellon University; 2010.
[42] R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria; 2017. https://www.R-project.org/
[43] ArlotS, CelisseA. A survey of cross‐validation procedures for model selection. Statistical Surveys. 2010;4:40‐79. · Zbl 1190.62080
[44] KrstajicD, ButurovicL, LeahyD, ThomasS. Cross‐validation pitfalls when selecting and assessing regression and classification models. J Cheminformatics. 2014;6:10.
[45] ShaoJ. Linear model selection by cross‐validation. J Am Stat Assoc. 1993;88(422):486‐494. · Zbl 0773.62051
[46] McLachlanG. Discriminant Analysis and Statistical Pattern Recognition. New York, NY: Wiley; 2004. · Zbl 1108.62317
[47] CortesC, VapnikV. Support‐vector networks. Machine Learning. 1995;20(3):273‐297. · Zbl 0831.68098
[48] VenablesW, RipleyB. Modern Applied Statistics with S. 4th ed. New York, NY: Springer; 2002. · Zbl 1006.62003
[49] MeyerD. Support vector machines: the interface to libsvmin package e1071. https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf. 2019.
[50] LiY, WangN, CarrollR. Selecting the number of principal components in functional data. J Am Stat Assoc. 2013;108(504):1284‐1294. · Zbl 1288.62102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.