×

Formal solutions of completely integrable Pfaffian systems with normal crossings. (English) Zbl 1377.35060

Summary: In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is partially implemented in the computer algebra system Maple.

MSC:

35F05 Linear first-order PDEs
35-04 Software, source code, etc. for problems pertaining to partial differential equations
68W30 Symbolic computation and algebraic computation
68W40 Analysis of algorithms
35A30 Geometric theory, characteristics, transformations in context of PDEs
35A08 Fundamental solutions to PDEs
Full Text: DOI

References:

[1] Abbas, H.; Barkatou, M.; Maddah, S. S., Formal solutions of a class of Pfaffian systems in two variables, (Proceedings of the International Symposium on Symbolic and Algebraic Computation (2014), ACM Press), 312-319 · Zbl 1325.68293
[2] Abbas, H.; Barkatou, M. A.; Maddah, S. S., On the reduction of singularly-perturbed linear differential systems, (Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (2014), ACM Press), 320-327 · Zbl 1325.68294
[3] Aparicio Monforte, A.; Kauers, M., Formal Laurent series in several variables, Expo. Math., 31, 4, 350-367 (December 2013) · Zbl 1283.13018
[4] Balser, W., Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations (2000), Springer · Zbl 0942.34004
[5] Barkatou, M., An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system, Appl. Algebra Eng. Commun. Comput., 8, 1, 1-23 (1997) · Zbl 0867.65034
[6] Barkatou, M., A rational version of Moser’s algorithm, (Proceedings of the International Symposium on Symbolic and Algebraic Computation (July 1995), ACM Press), 297-302 · Zbl 0920.34004
[7] Barkatou, M., Factoring systems of linear functional equations using eigenrings, (Kotsireas, I. S.; Zima, E. V., Latest Advances in Symbolic Algorithms (2007), World Scientific), 22-42
[8] Barkatou, M., Symbolic methods for solving systems of linear ordinary differential equations, (The International Symposium on Symbolic and Algebraic Computation (July 2010), ACM Press), 7-8, (tutorial)
[9] Barkatou, M. A.; Cluzeau, T.; El Bacha, C.; Weil, J. A., Computing closed form solutions of integrable connections, (Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation (2012), ACM Press), 43-50 · Zbl 1323.68580
[10] Barkatou, M.; El Bacha, C., On k-simple forms of first-order linear differential systems and their computation, J. Symb. Comput., 54, 36-58 (2013) · Zbl 1277.34011
[11] Barkatou, M.; Pfluegel, E., An algorithm computing the regular formal solutions of a system of linear differential equations, J. Symb. Comput., 28, 4, 569-587 (1999) · Zbl 0951.34066
[12] Barkatou, M.; Pfluegel, E., Computing super-irreducible forms of systems of linear differential equations via Moser-reduction: a new approach, (Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation (2007), ACM), 1-8 · Zbl 1189.68178
[13] Barkatou, M.; Pfluegel, E., ISOLDE, integration of systems of ordinary linear differential equations (2013), Available at:
[14] Barkatou, M.; LeRoux, N., Rank reduction of a class of Pfaffian systems in two variables, (Proceedings of the International Symposium on Symbolic and Algebraic Computation (2006), ACM Press), 204-211 · Zbl 1356.35093
[15] Broucke, R., On Pfaff’s equations of motion in dynamics; applications to satellite theory, J. Celest. Mech., 18, 3, 207-222 (1978) · Zbl 0389.70006
[16] Charrière, H., Triangulation Formelle de certains Systèmes de Pfaff Complètement Intégrables et Application à l’etude \(C^\infty\) des Systèmes non Linéaires, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7, 4, 625-714 (1980) · Zbl 0496.35024
[17] Charrière, H.; Gérard, R., Formal reduction of integrable linear connexion having a certain kind of irregular singularities, Analysis, 1, 85-115 (1981) · Zbl 0487.35016
[18] Deligne, P., Equations Différentielles à Points Singuliers Réguliers, Lecture Notes In Mathematics, vol. 163 (1970), Springer-Verlag · Zbl 0244.14004
[19] Delphenich, D., The role of integrability in a large class of physical systems (2012), arXiv preprint available at:
[20] van den Essen, A., Regular singularities along normal crossings, (Ramis, Gerard, Systèmes de Pfaff et Equations Différentielles dans le Champ Complexe. Systèmes de Pfaff et Equations Différentielles dans le Champ Complexe, Lecture Notes in Mathematics, vol. 712 (1979), Springer-Verlag), 88-130 · Zbl 0428.34002
[21] van den Essen, A.; Levelt, A. H.M., Irregular Singularities in Several Variables, Memoirs of AMS, vol. 40(270) (1982) · Zbl 0496.47043
[22] Gérard, R.; Sibuya, Y., Etude de certains systèmes de Pfaff avec singularités, (Ramis, Gerard, Systemes de Pfaff et Equations Différentielles dans le Champ Complexe. Systemes de Pfaff et Equations Différentielles dans le Champ Complexe, Lecture Notes in Mathematics, vol. 712 (1979), Springer-Verlag), 131-288 · Zbl 0455.35035
[23] Hashiguchi, H.; Numata, Y.; Takayama, N.; Takemura, A., The holonomic gradient method for the distribution function of the largest root of a Wishart matrix, J. Multivar. Anal., 117, 296-312 (2013) · Zbl 1282.33010
[24] LeRoux, N., Solutions formelles d’équations aux dérivées partielles (2006), University of Limoges, Ph.D. Thesis
[25] Levelt, A. H.M., Stabilizing differential operators: a method for computing invariants at irregular singularities, (Singer, M., Differential Equations and Computer Algebra (1991)), 181-228 · Zbl 0746.34012
[26] Maddah, S. S., Mathemagix Lindalg package for symbolic resolution of linear systems of differential equations (2014), Available at:
[27] Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics (1989), Cambridge University Press, Available at: · Zbl 0666.13002
[28] Moser, J., The order of a singularity in Fuchs’ theory, Math. Z., 72, 379-398 (1960) · Zbl 0117.04902
[29] Novikov, D.; Yakovenko, S., Lectures on meromorphic flat connections, (Normal Forms Bifurcations and Finiteness Problems in Differential Equations (2004)), 387-430
[30] Praagman, C., Formal Decomposition of \(n\) Commuting Partial Linear Difference Operators (1983), Rijksuniversiteit Groningen, Mathematisch Instituut · Zbl 0519.39003
[31] Takano, K., Local equivalence of linear Pfaffian systems with simple poles, Funkc. Ekvacioj, 24, 373-382 (1981) · Zbl 0501.58007
[32] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations (2002), Dover Publications · Zbl 0169.10903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.