×

Scalar moduli, wall crossing and phenomenological predictions. (English) Zbl 1260.83090

Summary: We present the scalar moduli stabilization from the perspective of the real intrinsic geometry. In this paper, we describe the physical nature of the vacuum moduli fluctuations of an arbitrary Fayet configuration. For finitely many Abelian scalar fields, we show that the framework of the real intrinsic geometry investigates the mixing between the marginal and threshold vacua. Interestingly, we find that the phenomena of wall crossing and the search of the stable vacuum configurations, pertaining to \(D\)-term and \(F\)-term scalar moduli, can be accomplished for the Abelian charges. For given vacuum expectation values of the moduli scalars, we provide phenomenological aspects of the vacuum fluctuations and phase transitions in the supersymmetry breaking configurations.

MSC:

83E50 Supergravity
14D20 Algebraic moduli problems, moduli of vector bundles
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory

References:

[1] Witten E., JHEP 04 pp 012–
[2] Sen A., JHEP 0705 pp 039–
[3] Sen A., JHEP 07 pp 078–
[4] DOI: 10.1142/S0217732309030023 · Zbl 1168.83338 · doi:10.1142/S0217732309030023
[5] DOI: 10.1007/s00220-010-1071-2 · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[6] Denef F., JHEP 10 pp 023–
[7] Denef F., JHEP 08 pp 050–
[8] DOI: 10.1016/j.aim.2007.06.011 · Zbl 1134.14008 · doi:10.1016/j.aim.2007.06.011
[9] DOI: 10.4310/ATMP.2003.v7.n5.a4 · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[10] DOI: 10.1103/PhysRevD.78.065003 · doi:10.1103/PhysRevD.78.065003
[11] DOI: 10.1016/j.nuclphysb.2007.04.009 · Zbl 1188.83087 · doi:10.1016/j.nuclphysb.2007.04.009
[12] DOI: 10.1103/PhysRevD.77.085027 · doi:10.1103/PhysRevD.77.085027
[13] DOI: 10.1103/PhysRevLett.77.4992 · doi:10.1103/PhysRevLett.77.4992
[14] DOI: 10.1103/PhysRevD.74.024004 · doi:10.1103/PhysRevD.74.024004
[15] Villadoro G., JHEP 0603 pp 087–
[16] DOI: 10.1142/S0217751X06034355 · doi:10.1142/S0217751X06034355
[17] DOI: 10.1007/978-3-540-79523-0_3 · Zbl 1155.83300 · doi:10.1007/978-3-540-79523-0_3
[18] DOI: 10.1016/j.physletb.2006.02.053 · Zbl 1247.83217 · doi:10.1016/j.physletb.2006.02.053
[19] DOI: 10.3390/e10040507 · Zbl 1179.83049 · doi:10.3390/e10040507
[20] DOI: 10.1016/0550-3213(95)00158-O · Zbl 0990.81663 · doi:10.1016/0550-3213(95)00158-O
[21] DOI: 10.1146/annurev.nucl.010909.083113 · doi:10.1146/annurev.nucl.010909.083113
[22] DOI: 10.1103/PhysRevD.78.066008 · doi:10.1103/PhysRevD.78.066008
[23] Seiberg N., Nucl. Phys. B 431 pp 19–
[24] DOI: 10.1016/S0370-2693(00)00396-8 · Zbl 0990.81125 · doi:10.1016/S0370-2693(00)00396-8
[25] Bruzzo U., JHEP 0305 pp 054–
[26] Bianchi M., JHEP 0908 pp 040–
[27] DOI: 10.1088/0264-9381/23/21/S05 · doi:10.1088/0264-9381/23/21/S05
[28] Gunaydin M., JHEP 0709 pp 056–
[29] Cecotti S., Nucl. Phys. B 355 pp 3–
[30] DOI: 10.1007/BF02096804 · Zbl 0787.58049 · doi:10.1007/BF02096804
[31] Heckman J. J., JHEP 0709 pp 011–
[32] Bhattacharyya S., JHEP 0809 pp 054–
[33] Bhattacharyya S., JHEP 0909 pp 034–
[34] Basu P., JHEP 1010 pp 045–
[35] DOI: 10.1103/PhysRevD.48.R3427 · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[36] Wald R. M., Living Rev. Relativ. 4 pp 6– · Zbl 1060.83041 · doi:10.12942/lrr-2001-6
[37] DOI: 10.1103/PhysRevD.50.846 · doi:10.1103/PhysRevD.50.846
[38] DOI: 10.1088/0264-9381/25/20/205009 · Zbl 1152.83405 · doi:10.1088/0264-9381/25/20/205009
[39] Sen A., JHEP 0509 pp 038–
[40] DOI: 10.1007/s10714-008-0626-4 · Zbl 1153.83007 · doi:10.1007/s10714-008-0626-4
[41] DOI: 10.1142/S0217751X09045893 · Zbl 1175.83045 · doi:10.1142/S0217751X09045893
[42] Sen A., JHEP 08 pp 068–
[43] Murthy S., JHEP 09 pp 022–
[44] Castro A., JHEP 0811 pp 052–
[45] Gimon E., JHEP 0907 pp 052–
[46] Castro A., JHEP 0912 pp 037–
[47] Cvetic M., JHEP 0909 pp 088–
[48] DOI: 10.4310/ATMP.1998.v2.n2.a1 · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[49] DOI: 10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[50] DOI: 10.1016/S0550-3213(99)00387-9 · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[51] DOI: 10.1016/0550-3213(95)00186-V · Zbl 0990.81666 · doi:10.1016/0550-3213(95)00186-V
[52] Hartman T., JHEP 0904 pp 019–
[53] DOI: 10.1103/PhysRevD.81.064007 · doi:10.1103/PhysRevD.81.064007
[54] Bellucci S., JHEP 1011 pp 030–
[55] DOI: 10.1142/S0217751X11054917 · Zbl 1263.83159 · doi:10.1142/S0217751X11054917
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.