×

Reaching generalized critical values of a polynomial. (English) Zbl 1288.14044

Let \(f:\mathbb{K}^{n}\rightarrow \mathbb{K}\) be a polynomial, \(\mathbb{K}= \mathbb{R}\) or \(\mathbb{C}\). The bifurcation set of \(f\) is the smallest set \( B(f)\subset \mathbb{K}\) such that over \(\mathbb{K\diagdown }B(f)\), \(f\) is a \( C^{\infty }\)-fibration. It is known that \(B(f)\) is finite and \(B(f)\subset K_{0}(f)\cup K_{\infty }(f),\) where \(K_{0}(f)\) is the set of critical values of \(f\) and \[ K_{\infty }(f)=\{y\in \mathbb{K}:\exists x_{\nu }\in \mathbb{K}^{n},~x_{\nu }\rightarrow \infty \text{ }s.t.\text{ }f(x_{\nu })\rightarrow \nu ,~\left| \left| x_{\nu }\right| \right| \left| \left| df(x_{\nu })\right| \right| \rightarrow 0\} \] the set of asymptotic critical values of \(f\) (in other words the set where the Malgrange condition fails for \(f).\) The set \(K(f):=K_{0}(f)\cup K_{\infty }(f)\) is called the set of generalized critical values of \(f.\) The authors give an algorithm to compute the set \(K(f)\) in the real and complex case. The algorithm uses a finite dimensional space of rational arcs \(x(t)\) along which we can reach asymptotic critical values of \(f\), namely arcs with parametrizations \(x(t)=\sum_{-D_{1}\leq i\leq D_{2}}a_{i}t^{i},\) \(a_{i}\in \mathbb{K}^{n},\) for appropriate \(D_{1},D_{2}.\)

MSC:

14R25 Affine fibrations
14D06 Fibrations, degenerations in algebraic geometry
14Q20 Effectivity, complexity and computational aspects of algebraic geometry

Software:

RAGlib

References:

[1] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006) · Zbl 1102.14041
[2] Benedetti, R., Risler, J.-J.: Real Algebraic and Semi-Algebraic Sets. Actualités Mathématiques. Hermann, Paris (1990) · Zbl 0694.14006
[3] Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, E.M.G, vol. 36. Springer, Berlin (1998) · Zbl 0912.14023 · doi:10.1007/978-3-662-03718-8
[4] Coste, M., de la Puente, M.J.: Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion. J. Pure Appl. Algebra 162(1), 23-35 (2001) · Zbl 1042.14038 · doi:10.1016/S0022-4049(00)00111-0
[5] Flenner, H., O’Carroll, L., Vogel, W.: Joins and Intersections. Springer, Berlin (1999) · Zbl 0939.14003 · doi:10.1007/978-3-662-03817-8
[6] Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin (1988) · Zbl 0639.14012 · doi:10.1007/978-3-642-71714-7
[7] Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Englewood Cliffs, NJ (1974) · Zbl 0361.57001
[8] Guning, R., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ (1965) · Zbl 0141.08601
[9] Hà, H.V., Lê, D.T.: Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9(1), 21-32 (1984) · Zbl 0597.32005
[10] Hà, H.V., Pham, T.S.: Minimizing polynomial functions. Acta Math. Vietnam. 32(1), 71-82 (2007) · Zbl 1250.14040
[11] Hà, H.V., Pham, T.S.: Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim. 19(2), 941-951 (2008) · Zbl 1163.13020 · doi:10.1137/080719212
[12] Iitaka, S.: Algebraic Geometry. Springer, Berlin (1982) · Zbl 0491.14006 · doi:10.1007/978-1-4613-8119-8
[13] Jelonek, Z.: The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58, 259-266 (1993) · Zbl 0806.14009
[14] Jelonek, Z.: Testing sets for properness of polynomial mappings. Math. Ann. 315, 1-35 (1999) · Zbl 0946.14039 · doi:10.1007/s002080050316
[15] Jelonek, Z.: On the Łojasiewicz exponent. Hokkaido J. Math. 35, 471-485 (2006) · Zbl 1108.14050 · doi:10.14492/hokmj/1285766366
[16] Jelonek, Z., Kurdyka, K.: On asymptotic critical values of a complex polynomial. J. für die reine und angewandte Mathematik 565, 1-11 (2003) · Zbl 1047.32019 · doi:10.1515/crll.2003.101
[17] Jelonek, Z., Kurdyka, K.: Quantitative generalized Bertini-Sard theorem for smooth affine varieties. Discret. Comput. Geom. 34, 659-678 (2005) · Zbl 1083.14069 · doi:10.1007/s00454-005-1203-1
[18] Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 281, 445-462 (1988) · Zbl 0686.14027 · doi:10.1007/BF01460044
[19] Parusiński, A.: On the bifurcation set of complex polynomial with isolated singularities at infinity. Compositio Math. 97, 369-384 (1995) · Zbl 0840.32007
[20] Parusiński, A., et al.: A note on singularities at infinity of complex polynomials. In: Budzyński, R. (ed.) Symplectic Singularities and Geometry of Gauge Fields, pp. 131-141. Banach Center Publications 39, Warszawa (1997) · Zbl 0882.32018
[21] Raibaut, M.: Motivic Milnor fibers of a rational function. C. R. Math. Acad. Sci. Paris 350(9-10), 519-524 (2012) · Zbl 1248.32014 · doi:10.1016/j.crma.2012.04.021
[22] Safey El Din, M.: Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1, 177-207 (2007) · Zbl 1126.14068 · doi:10.1007/s11786-007-0003-9
[23] Safey El Din, M.: Computing the global optimum of a multivariate polynomial over the reals. In: Jeffrey, D. (ed.) ISSAC 2008 Proceedings, Austria (Hagenberg) (2008) · Zbl 1166.65317
[24] Scheiblechner, P.: On a generalization of Stickelberger’s theorem. J. Symb. Comput. 45(12), 1459-1470 (2010) · Zbl 1211.14065 · doi:10.1016/j.jsc.2010.06.020
[25] Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \[{\mathbb{C}}^2\] C2. J. Math. Soc. Jpn. 26, 241-257 (1974) · Zbl 0276.14001 · doi:10.2969/jmsj/02620241
[26] Thom, R.: Ensembles et morphismes, stratifiés. Bull. Am. Math. Soc. 75, 240-284 (1969) · Zbl 0197.20502 · doi:10.1090/S0002-9904-1969-12138-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.