×

Dynamical symmetries, coherent states and nonlinear realizations: towards noncommutative gravity. (English) Zbl 1537.81130

Summary: Based on the gravity model as a gauge theory previously by the authors, the introduction of noncommutative structures in the very geometry is discussed and developed in a new different way. Taking into account a linear Lagrangian in curvature and considering a pair of coherent vectors responsible, among other things, for the symmetry breaking, the introduction of noncommutativity in the very structure of the geometry is achieved. The fact that the vectors are coherent states ensure not only the natural and total quantization of the model, but also the formulation of the noncommutative structure, in particular by the introduction of a star product from the convolutory properties thereof. This new star product, in a sharp contrast with other proposals, is independent of the Bargmann index or other parameters depending on the dimension of the representation of the structure group of the noncommutativity. We also explain in the same way that a matrix model, through the properties of these coherent vectors, can be easily formulated. The pros and cons of the implementation of star products versus a theory of matrices based on coset coherent states are briefly discussed.

MSC:

81R30 Coherent states
81R15 Operator algebra methods applied to problems in quantum theory
81S10 Geometry and quantization, symplectic methods
83C45 Quantization of the gravitational field
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
70H03 Lagrange’s equations
53D55 Deformation quantization, star products
42A85 Convolution, factorization for one variable harmonic analysis
20E34 General structure theorems for groups
15A04 Linear transformations, semilinear transformations
Full Text: DOI

References:

[1] Arbuzov, A. B. and Cirilo-Lombardo, D. J., Dynamical symmetries, coherent states and nonlinear realizations: The SO(2,4) case, Int. J. Geom. Methods Mod. Phys.15(01) (2018) 1850005. · Zbl 1380.81159
[2] Cirilo-Lombardo, D. J., Dynamical symmetries, super-coherent states and noncommutative structures: Categorical and geometrical quantization analysis, Int. J. Appl. Comput. Math.4 (2018) 86. · Zbl 1400.81124
[3] Arbuzov, A. B. and Cirilo-Lombardo, D. J., Phys. Scr.94 (2019) 125302.
[4] Stelle, K. S. and West, P. C., de Sitter gauge invariance and the geometry of the Einstein-Cartan theory, J. Phys. A, Math. Gen.12(8) (1979) L205.
[5] Castellani, L., A locally supersymmetric SO(10, 2) invariant action for D = 12 supergravity, J. High Energy Phys.61 (2017) 061. · Zbl 1380.83278
[6] Chamseddine, A. H. and West, P. C., Supergravity as a gauge theory of supersymmetry, Nucl. Phys. B129(1) (1977) 39-44.
[7] S. W. MacDowell and F. Mansouri, Unified geometric theory of gravity and supergravity, Phys. Rev. Lett.38 (1977) 739, Erratum 38 (1977) 1376.
[8] A. M. Perelomov, Generalized Coherent States and their Applications (Springer, Berlin, 1986); J. R. Klauder and B. S. Skagerstam, Coherent States-Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985). · Zbl 1050.81558
[9] Kirillov, A. A., Elements of the Theory of Representations (Springer, New York, 1974).
[10] Chamseddine, A. H., Complexified gravity in noncommutative spaces, Commun. Math. Phys.218 (2001) 283. · Zbl 1042.83023
[11] Cho, Y. M., Gauge theory of Poincare symmetry, Phys. Rev. D14 (1976) 3341.
[12] Chamseddine, A. H., West, P. C., Supergravity as a gauge theory of supersymmetry, Nucl. Phys. B129 (1977) 39.
[13] Lovelock, D., The Einstein tensor and its generalizations, J. Math. Phys.12 (1971) 498. · Zbl 0213.48801
[14] van Niewenhuizen, P., Kaku, M. and Townsend, P., Properties of conformal supergravity, Phys. Rev. D17 (1978) 3179.
[15] Cirilo Lombardo, D. J., NonAbelian Born-Infeld action, geometry and supersymmetry, Class. Quantum Grav.22 (2005) 4987-5004. · Zbl 1100.81034
[16] Cirilo-Lombardo, D. J., Algebraic structures, physics and geometry from a unified field theoretical framework, Int. J. Theor. Phys.54(10) (2015) 3713-3727. · Zbl 1325.81180
[17] Cirilo-Lombardo, D. J., NonRiemannian geometry, Born-Infeld models and trace free gravitational equations, J. High Energy Astrophys.16 (2017) 1-14.
[18] Cirilo-Lombardo, D. J., NonRiemannian generalizations of the Born-Infeld model and the meaning of the cosmological term, Int. J. Geom. Methods Mod. Phys.14(7) (2017) 1750108. · Zbl 1377.83081
[19] E. Cremmer and J. Scherk, Dual models in four-dimensions with internal symmetries, Nucl. Phys. B103 (1976) 399; Spontaneous compactification of space in an Einstein-Yang-Mills Higgs Model, Nucl. Phys. B108 (1976) 409; Spontaneous compactification of extra space dimensions, Nucl. Phys. B118 (1977) 61; Z. Horvath, L. Palla, E Cremmer and J. Scherk, Grand unified schemes and spontaneous compactification, Nucl. Phys. B127 (1977) 57.
[20] D. V. Volkov, D. P. Sorokin and V. I. Tkach, Theor. Math. Phys.61(2) (1984) 241-253; Theor. Math. Phys.61(2) (1984) 1117-1125; D. V. Volkov et al., Sov. J. Nucl. Phys.39 (1984) 823-827, Yad. Fiz.39 (1984) 1306-1314; Sov. J. Nucl. Phys.41 (1985) 872-879, Yad. Fiz.91 (1985) 1373-1386.
[21] Ivanov, E. A., Gauge fields, nonlinear realizations, supersymmetry, Phys. Part. Nucl.47(4) (2016) 508-539.
[22] Serie, E., Masson, T. and Kerner, R., Nonabelian generalization of Born-Infeld theory inspired by noncommutative geometry, Phys. Rev. D68 (2003) 125003.
[23] Manolakos, G., Manousselis, P. and Zoupanos, G., Gauge theories: From Kaluza-Klein to noncommutative gravity theories, Symmetry11(7) (2019) 856. · Zbl 1537.83091
[24] Snyder, H. S., Quantized spacetime, Phys. Rev.71 (1947) 38. · Zbl 0035.13101
[25] N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energy Phys.9909 (1999) 032, arXiv: hep-th/9908142. · Zbl 0957.81085
[26] M. R. Douglas and N. A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977, arXiv: hep-th/0106048; R. J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378 (2003) 207, arXiv: hep-th/0109162; V. O. Rivelles, Supersymmetry and gravity in noncommutative field theories, Nucl. Phys. Proc. Suppl.127 (2004) 63, arXiv: hep-th/0305122.
[27] Seiberg, N., Susskind, L. and Toumbas, N., Space-time noncommutativity and causality, J. High Energy Phys.0006 (2000) 044, arXiv: hep-th/0005015. · Zbl 0989.81607
[28] Minwalla, S., Van Raamsdonk, M. and Seiberg, N., Noncommutative perturbative dynamics, J. High Energy Phys.0002 (2000) 020, arXiv: hep-th/9912072. · Zbl 0959.81108
[29] Rivelles, V. O., Noncommutative field theories and gravity, Phys. Lett. B558 (2003) 191, arXiv: hep-th/0212262. · Zbl 1011.81074
[30] R. J. Szabo, Symmetry, gravity and noncommutativity, arXiv: hep-th/0606233. · Zbl 1117.83001
[31] A. H. Chamseddine, G. Felder and J. Frohlich, Gravity in noncommutative geometry, Commun. Math. Phys.155 (1993) 205, arXiv: hep-th/9209044; J. Madore and J. Mourad, A Noncommutative extension of gravity, Int. J. Mod. Phys. D3 (1994) 221, arXiv: gr-qc/9307030; A. Jevicki and S. Ramgoolam, Noncommutative gravity from the AdS/CFT correspondence, J. High Energy Phys.9904 (1999) 032, arXiv: hep-th/9902059; J. W. Moffat, Noncommutative quantum gravity, Phys. Lett. B491 (2000) 345, arXiv: hep-th/0007181; S. Cacciatori, D. Klemm, L. Martucci and D. Zanon, Noncommutative Einstein-AdS gravity in three dimensions, Phys. Lett. B536 (2002) 101, arXiv: hep-th/0201103; S. Cacciatori, A. H. Chamseddine, D. Klemm, L. Martucci, W. A. Sabra and D. Zanon, Noncommutative gravity in two dimensions, Class. Quantum Grav.19 (2002) 4029, arXiv: hep-th/0203038; M. A. Cardella and D. Zanon, Noncommutative deformation of four dimensional Einstein gravity, Class. Quantum Grav.20 (2003) L95, arXiv: hep-th/0212071; H. Garcia-Compean, O. Obregon, C. Ramirez and M. Sabido, Noncommutative self-dual gravity, Phys. Rev. D68 (2003) 044015m, arXiv: hep-th/0302180; J. M. Romero and J. D. Vergara, The Kepler problem and non commutativity, Mod. Phys. Lett. A18 (2003) 1673, arXiv: hep-th/0303064; D. V. Vassilevich, Quantum noncommutative gravity in two dimensions, Nucl. Phys. B715 (2005) 695, arXiv: hep-th/0406163; P. Nicolini, A model of radiating black hole in noncommutative geometry, J. Phys. A38 (2005) L631, arXiv: hep-th/0507266; P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole, Phys. Lett. B632 (2006) 547, arXiv:gr-qc/0510112, C. Deliduman, Noncommutative gravity in six dimensions, arXiv: hep-th/0607096.
[32] A. H. Chamseddine, Complexified gravity in noncommutative spaces, Commun. Math. Phys.10(218) (2001) 283, arXiv: hep-th/0005222; A. H. Chamseddine, Deforming Einstein’s gravity, Phys. Lett. B504 (2001) 33, arXiv: hep-th/0009153; H. Nishino and S. Rajpoot, Teleparallel complex gravity as foundation for noncommutative gravity, Phys. Lett. B532 (2002) 334, arXiv: hep-th/0107216; A. H. Chamseddine, Invariant actions for noncommutative gravity, J. Math. Phys.44 (2003) 2534, arXiv: hep-th/0202137; A. H. Chamseddine, Sl(2,c) gravity with complex vierbein and its noncommutative extension, Phys. Rev. D69 (2004) 024015, arXiv: hep-th/0309166. · Zbl 1003.81026
[33] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, A gravity theory on noncommutative spaces, Class. Quantum Grav.22 (2005) 3511, arXiv: hep-th/0504183; P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Noncommutative geometry and gravity, Class. Quantum Grav. 23 (2006) 1883, arXiv:hep-th/0510059; F. Meyer, Noncommutative spaces and gravity, arXiv: hep-th/0510188; B. M. Zupnik, Reality in noncommutative gravity, arXiv: hep-th/0512231; A. P. Balachandran, T. R. Govindarajan, K. S. Gupta and S. Kurkcuoglu, Noncommutative two dimensional gravities, arXiv: hep-th/0602265; A. Kobakhidze, Theta-twisted gravity, arXiv: hep-th/0603132; S. Kurkcuoglu and C. Saemann, Drinfeld twist and general relativity with fuzzy spaces, arXiv: hep-th/0606197. · Zbl 1129.83011
[34] Alvarez, E., Can one tell Einstein’s unimodular theory from Einstein’s general relativity?, J. High Energy Phys.0503 (2005) 002, arXiv: hep-th/0501146.
[35] X. Calmet and A. Kobakhidze, Noncommutative general relativity, Phys. Rev. D72 (2005) 045010, arXiv: hep-th/0506157; X. Calmet, Cosmological constant and noncommutative spacetime, arXiv: hep-th/0510165; X. Calmet and A. Kobakhidze, Second order noncommutative corrections to gravity, arXiv: hep-th/0605275; P. Mukherjee and A. Saha, Comment on the first order noncommutative correction to gravity, arXiv: hep-th/0605287.
[36] L. Alvarez-Gaume, F. Meyer and M. A. Vazquez-Mozo, Comments on noncommutative gravity, arXiv: hep-th/0605113. · Zbl 1215.83040
[37] Harikumar, E. and Rivelles, V. O., Noncommutative gravity, Class. Quantum Grav.23 (2006) 7551. · Zbl 1133.83370
[38] Sannikov, S. S., On noncompact symmetry group of oscillator, J. Exp. Theor. Phys.49 (1965) 1913. (in Russian)
[39] Majorana, E., Relativistic theory of particles with arbitrary intrinsic angular momentum, Nuovo Cimento9 (1932) 335. · JFM 58.1348.02
[40] Dirac, P. A. M., A positive-energy relativistic wave equation, Proc. R. Soc. A322 (1971) 435.
[41] D. J. Cirilo-Lombardo, The geometrical properties of Riemannian superspaces, exact solutions and the mechanism of localization, Phys. Lett. B661 (2008) 186-191; Noncompact groups, coherent states, relativistic wave equations and the harmonic oscillator, Found. Phys.37 (2007) 919-950; Noncompact groups, coherent states, relativistic wave equations and the harmonic oscillator II: Physical and geometrical considerations, Found. Phys.39 (2009) 373-396; Geometrical properties of Riemannian superspaces, observables and physical states, Eur. Phys. J. C - Part. Fields72(7) (2012) 2079; Information metric from Riemannian superspaces, D. J. Cirilo-Lombardo and V. I. Afonso, Phys. Lett. A376 (2012) 3599-3603; D. J. Cirilo-Lombardo and T. Prudencio, Quantum gravity: Physics from supergeometries, Int. J. Geom. Methods Mod. Phys.11 (2014) 1450067. · Zbl 1171.81011
[42] Cirilo-Lombardo, D. J., Coherent states, vacuum structure and infinite component relativistic wave equations, Int. J. Geom. Methods Mod. Phys.13(01) (2015) 1650004. · Zbl 1333.81136
[43] Man’ko, V. I.et al.., f oscillators and nonlinear coherent states, Phys. Scr.55 (1997) 528.
[44] Ali, S. A.et al., On the Poincare gauge theory of gravitation, Int. J. Theor. Phys.48 (2009) 3426. · Zbl 1186.83113
[45] Capozziello, S., Cirilo-Lombardo, D. J. and De Laurentis, M., The affine structure of gravitational theories: Symplectic groups and geometry, Int. J. Geom. Methods Mod. Phys.11(10) (2014) 1450081. · Zbl 1329.83150
[46] Basini, G. and Capozziello, S., A dynamical unification scheme from general conservation laws, Gen. Relativ. Gravit.35 (2003) 2217. · Zbl 1045.83056
[47] Capozziello, S., Basini, G. and De Laurentis, M., Deriving the mass of particles from extended theories of gravity in LHC era, Eur. Phys. J. C71 (2011) 1679. · Zbl 1260.83030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.