×

An operad of non-commutative independences defined by trees. (English) Zbl 1472.46068

Summary: We study certain notions of \(N\)-ary non-commutative independence, which generalize free, Boolean, and monotone independence. For every rooted subtree \(\mathcal{T}\) of an \(N\)-regular rooted tree, we define the \(\mathcal{T}\)-free product of \(N\) non-commutative probability spaces and the \(\mathcal{T}\)-free additive convolution of \(N\) non-commutative laws.
These \(N\)-ary additive convolution operations form a topological symmetric operad which includes the free, Boolean, monotone, and anti-monotone convolutions, as well as the orthogonal and subordination convolutions. Using the operadic framework, the proof of convolution identities such as \(\mu\boxplus\nu = \mu \vartriangleright (\nu\,\square\!\!\!\!\!\vdash \!\mu) \) can be reduced to combinatorial manipulations of trees. In particular, we obtain a decomposition of the \(\mathcal{T} \)-free convolution into iterated Boolean and orthogonal convolutions, which generalizes work of R. Lenczewski [J. Funct. Anal. 246, No. 2, 330–365 (2007; Zbl 1129.46055)].
We also develop a theory of \(\mathcal{T} \)-free independence that closely parallels the free, Boolean, and monotone cases, provided that the root vertex has more than one neighbor. This includes combinatorial moment formulas, cumulants, a central limit theorem, and classification of distributions that are infinitely divisible with bounded support. In particular, we study the case where the root vertex of \(\mathcal{T}\) has \(n\) children and each other vertex has \(d\) children, and we relate the \(\mathcal{T} \)-free convolution powers to free and Boolean convolution powers and the Belinschi-Nica semigroup.

MSC:

46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
05C76 Graph operations (line graphs, products, etc.)
60E07 Infinitely divisible distributions; stable distributions

Citations:

Zbl 1129.46055

References:

[1] L. Accardi, R. Lenczewski, and R. Sałapata,Decompositions of the free product of graphs, Infin. Dimens. Anal. Quantum Probab. Related Topics 10 (2007), 303-334. · Zbl 1142.05333
[2] A. B. Aleksandrov, F. L. Nazarov, and V. V. Peller,Functions of noncommuting selfadjoint operators under perturbation and estimates of triple operator integrals, Adv. Math. 295 (2016), 1-52. · Zbl 1359.47012
[3] A. B. Aleksandrov and V. V. Peller,Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities, Indiana Univ. Math. J. 59 (2010), 1451-1490. · Zbl 1223.47015
[4] A. B. Aleksandrov and V. V. Peller,Operator Hölder-Zygmund functions, Adv. Math. 224 (2010), 910-966. · Zbl 1193.47017
[5] A. B. Aleksandrov and V. V. Peller,Multiple operator integrals, Haagerup and Haageruplike tensor products, and operator ideals, Bull. London Math. Soc. 49 (2017), 463-479. · Zbl 1441.47022
[6] G. W. Anderson, A. Guionnet, and O. Zeitouni,An Introduction to Random Matrices, Cambridge Stud. Adv. Math. 118, Cambridge Univ. Press, Cambridge, 2009.
[7] M. Anshelevich and O. Arizmendi,The exponential map in non-commutative probability, Int. Math. Res. Notices 2017, 5302-5342. · Zbl 1405.46048
[8] M. Anshelevich and J. D. Williams,Limit theorems for monotonic convolution and the Chernoff product formula, Int. Math. Res. Notices 2014, 2990-3021. · Zbl 1320.46048
[9] M. Anshelevich and J. D. Williams,Operator-valued monotone convolution semigroups and an extension of the Bercovici-Pata bijection, Doc. Math. 21 (2016), 841-871. · Zbl 1364.46056
[10] O. Arizmendi, M. Ballesteros, and F. Torres-Ayala,Conditionally free reduced products of Hilbert spaces, Studia Math. 254 (2020), 23-44. · Zbl 1454.46051
[11] O. Arizmendi and M. Salazar,A Berry-Esseen type limit theorem for Boolean convolution, Arch. Math. (Basel) 111 (2018), 101-111. · Zbl 1402.46042
[12] O. Arizmendi, M. Salazar, and J.-C. Wang,Berry-Esseen type estimate and return sequence for parabolic iteration in the upper half-plane, Int. Math. Res. Notices (online, 2019).
[13] S. T. Belinschi,Complex Analysis Methods in Non-commutative Probability, Ph.D. thesis, Indiana University, 2005.
[14] S. T. Belinschi, T. Mai, and R. Speicher,Analytic subordination theory of operatorvalued free additive convolution and the solution of a general random matrix problem, J. Reine Angew. Math. 732 (2017), 21-53. · Zbl 1456.60013
[15] S. T. Belinschi and A. Nica,On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution, Indiana Univ. Math. J. 57 (2008), 1679-1713. · Zbl 1165.46033
[16] S. T. Belinschi and A. Nica,Free Brownian motion and evolution towards-infinite divisibility fork-tuples, Int. J. Math. 20 (2009), 309-338. · Zbl 1173.46306
[17] S. T. Belinschi, M. Popa, and V. Vinnikov,Infinite divisibility and a non-commutative Boolean-to-free Bercovici-Pata bijection, J. Funct. Anal. 262 (2012), 94-123. · Zbl 1247.46054
[18] S. T. Belinschi, M. Popa, and V. Vinnikov,On the operator-valued analogues of the semicircle, arcsine and Bernoulli laws, J. Operator Theory 70 (2013), 239-258. · Zbl 1289.46092
[19] H. Bercovici,A remark on monotonic convolution, Infin. Dimens. Anal. Quantum Probab. Related Topics 8 (2005), 117-120. · Zbl 1168.46310
[20] H. Bercovici,Multiplicative monotone convolution, Illinois J. Math. 49 (2005), 929-951. · Zbl 1099.46041
[21] H. Bercovici,On Boolean convolutions, in: Operator Theory 20 (Timişoara, 2004), K. Davidson et al. (eds.), Theta Ser. Adv. Math. 6, Theta, Bucureşti, 2006, 7-13. · Zbl 1182.74031
[22] H. Bercovici and V. Pata,Stable laws and domains of attraction in free probability theory. With an appendix by Philippe Biane, Ann. of Math. (2) 149 (1999), 1023-1060. · Zbl 0945.46046
[23] H. Bercovici and D. Voiculescu,Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific J. Math. 153 (1992), 217-248. · Zbl 0769.60013
[24] H. Bercovici and J.-C. Wang,Limit theorems for free multiplicative convolutions, Trans. Amer. Math. Soc. 360 (2008), 6089-6102. · Zbl 1166.46039
[25] P. Biane,Processes with free increments, Math. Z. 227 (1998), 143-174. · Zbl 0902.60060
[26] B. Blackadar,Operator Algebras. Theory ofC∗-algebras and von Neumann Algebras, Encyclopaedia of Math. Sci. 122, Operator Algebras and Non-commutative Geometry III, Springer, Berlin, 2006. · Zbl 1092.46003
[27] M. Bożejko, M. Leinert, and R. Speicher,Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175 (1996), 357-388. · Zbl 0874.60010
[28] G. P. Chistyakov and F. Götze,Limit theorems in free probability theory. I, Ann. Probab. 36 (2008), 54-90. · Zbl 1157.46037
[29] U. Franz,Multiplicative monotone convolutions, in: Quantum Probability, Banach Center Publ. 73, Inst. Math., Polish Acad. Sci., Warszawa, 2006, 153-166. · Zbl 1109.46054
[30] U. Franz,Boolean convolution of probability measures on the unit circle, in: Analyse et probabilités, Sémin. Congr. 16, Soc. Math. France, Paris, 2008, 83-94. · Zbl 1180.60011
[31] U. Franz,Monotone and Boolean convolutions for non-compactly supported probability measures, Indiana Univ. Math. J. 58 (2009), 1151-1185. · Zbl 1186.46065
[32] P. Glockner, M. Schürmann, and R. Speicher,Realization of free white noises, Arch. Math. (Basel) 58 (1992), 407-416. · Zbl 0724.60104
[33] M. Guţă and H. Maassen,Symmetric Hilbert spaces arising from species of structures, Math. Z. 239 (2002), 477-513. · Zbl 1006.81039
[34] T. Hasebe,Monotone convolution and monotone infinite divisibility from complex analytic viewpoints, Infin. Dimens. Anal. Quantum Probab. Related Topics 13 (2010), 111-131. · Zbl 1198.60014
[35] T. Hasebe,Monotone convolution semigroups, Studia Math. 200 (2010), 175-199. · Zbl 1216.46058
[36] T. Hasebe and H. Saigo,Joint cumulants for natural independence, Electron. Comm. Probab. 16 (2011), 491-506. · Zbl 1247.46052
[37] T. Hasebe and H. Saigo,The monotone cumulants, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011), 1160-1170. · Zbl 1273.46049
[38] T. Hasebe and H. Saigo,On operator-valued monotone independence, Nagoya Math. J. 215 (2014), 151-167. · Zbl 1322.46042
[39] T. Hasebe, T. Simon, and M. Wang,Some properties of the free stable distributions, Ann. Inst. H. Poincaré Probab. Statist. 56 (2020), 296-325. · Zbl 1479.60034
[40] J. W. Helton, T. Mai, and R. Speicher,Applications of realizations(aka linearizations) to free probability, J. Funct. Anal. 274 (2018), 1-79. · Zbl 1376.81026
[41] D. Jekel,Operator-valued chordal Loewner chains and non-commutative probability, J. Funct. Anal. 278 (2020), no. 10, art. 108452, 100 pp. · Zbl 1446.46044
[42] D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov,Foundations of Free Non-Commutative Function Theory, Math. Surveys Monogr. 199, Amer. Math. Soc., Providence, RI, 2014. · Zbl 1312.46003
[43] A. Kula and J. Wysoczański,An example of a Boolean-free type central limit theorem, Probab. Math. Statist. 33 (2013), 341-352. · Zbl 1285.60019
[44] E. C. Lance,HilbertC∗-modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0822.46080
[45] F. Lehner,Free cumulants and enumeration of connected partitions, Eur. J. Combin. 23 (2002), 1025-1031. · Zbl 1012.05003
[46] T. Leinster,Higher Operads, Higher Categories, London Math. Soc. Lecture Note Ser. 298, Cambridge Univ. Press, Cambridge, 2004. · Zbl 1160.18001
[47] R. Lenczewski,Decompositions of the free additive convolution, J. Funct. Anal. 246 (2007), 330-365. · Zbl 1129.46055
[48] R. Lenczewski,Operators related to subordination for free multiplicative convolutions, Indiana Univ. Math. J. 57 (2008), 1055-1103. · Zbl 1155.46035
[49] W. Liu,Relations between convolutions and transforms in operator-valued free probability, arXiv:1809.05789 (2018).
[50] W. Liu,Free-Boolean independence for pairs of algebras, J. Funct. Anal. 277 (2019), 994-1028. · Zbl 1457.46068
[51] Y. G. Lu,An interacting free Fock space and the arcsine law, Probab. Math. Statist. 17 (1997), 149-166. · Zbl 0880.60065
[52] T. Mai and R. Speicher,Operator-valued and multivariate free Berry-Esseen theorems, in: Limit Theorems in Probability, Statistics and Number Theory, P. Eichelsbacher et al. (eds.), Springer Proc. Math. Statist. 42, Springer, Heidelberg, 2013, 113-140. · Zbl 1282.46060
[53] C. Male,Traffic distributions and independence: permutation invariant random matrices and the three notions of independence, arXiv:1111.4662 (2011), to appear in Mem. Amer. Math. Soc.
[54] W. Młotkowski,Λ-free Probability, Infin. Dimens. Anal. Quantum Probab. Related Topics 7 (2004), 27-41. · Zbl 1052.46050
[55] N. Muraki,Noncommutative Brownian motion in monotone Fock space, Comm. Math. Phys. 183 (1997), 557-570. · Zbl 0874.60075
[56] N. Muraki,Monotonic convolution and monotone Lévy-Hinčin formula, preprint, 2000, https://www.math.sci.hokudai.ac.jp/∼thasebe/Muraki2000.pdf.
[57] N. Muraki,Monotonic independence, monotonic central limit theorem, and monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab. Related Topics 4 (2001), 39-58. · Zbl 1046.46049
[58] N. Muraki,The five independences as natural products, Infin. Dimens. Anal. Quantum Probab. Related Topics 6 (2003), 337-371. · Zbl 1053.81057
[59] N. Muraki,A simple proof of the classification theorem for positive natural products, Probab. Math. Statist. 33 (2013), 315-326. · Zbl 1291.46057
[60] A. Nica,Multi-variable subordination distributions for free additive convolution, J. Funct. Anal. 257 (2009), 428-463. · Zbl 1186.46068
[61] A. Nica and R. Speicher,On the multiplication of freeN-tuples of noncommutative random variables, Amer. J. Math. 118 (1996), 799-837. · Zbl 0856.46035
[62] W. L. Paschke,Inner product modules overB∗-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. · Zbl 0239.46062
[63] M. Popa,A combinatorial approach to monotonic independence over aC∗-algebra, Pacific J. Math. 237 (2008), 299-325. · Zbl 1152.46054
[64] M. Popa,A new proof for the multiplicative property of the Boolean cumulants with applications to the operator-valued case, Colloq. Math. 117 (2009), 81-93. · Zbl 1185.46045
[65] M. Popa and V. Vinnikov,Non-commutative functions and the non-commutative Lévy- Hinčin formula, Adv. Math. 236 (2013), 131-157. · Zbl 1270.46060
[66] D. Shlyakhtenko,R-transform of certain joint distributions, in: Free Probability Theory (Waterloo, 1995), D. Voiculescu (ed.), Fields Inst. Comm. 12, Amer. Math. Soc., Providence, RI, 1997, 253-256. · Zbl 0910.46046
[67] D. Shlyakhtenko,On operator-valued free convolution powers, Indiana Univ. Math. J. 62 (2013), 91-97. · Zbl 1293.46036
[68] M. Skeide,Independence and product systems, in: Recent Developments in Stochastic Analysis and Related Topics, World Sci. Publ., Hackensack, NJ, 2004, 420-438. · Zbl 1080.81034
[69] R. Speicher,Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann. 298 (1994), 611-628. · Zbl 0791.06010
[70] R. Speicher,On universal products, in: Free Probability Theory (Waterloo, 1995), D. Voiculescu (ed.), Fields Inst. Comm. 12, Amer. Math. Soc., Providence, RI, 1997, 257-266. · Zbl 0877.46044
[71] R. Speicher,Combinatorial theory of the free product with amalgamation and operatorvalued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627, x+88 pp. · Zbl 0935.46056
[72] R. Speicher and R. Woroudi,Boolean convolution, in: Free Probability Theory (Waterloo, 1995), D. Voiculescu (ed.), Fields Inst. Comm. 12, Amer. Math. Soc., Providence, RI, 1997, 267-279. · Zbl 0872.46033
[73] R. Speicher and J. Wysoczański,Mixtures of classical and free independence, Arch. Math. (Basel) 107 (2016), 445-453. · Zbl 1364.46059
[74] D. Voiculescu,Symmetries of some reduced free productC∗-algebras, in: Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983), H. Araki et al. (eds.), Lecture Notes in Math. 1132, Springer, Berlin, 1985, 556-588. · Zbl 0562.00005
[75] D. Voiculescu,Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323-346. · Zbl 0651.46063
[76] D. Voiculescu,The analogues of entropy and Fisher’s information in free probability theory. I, Comm. Math. Phys. 155 (1993), 71-92. · Zbl 0781.60006
[77] D. Voiculescu,Operations on certain non-commutative operator-valued random variables, in: Recent Advances in Operator Algebras (Orléans, 1992), Astérisque 232 (1995), 243-275. · Zbl 0839.46060
[78] D. Voiculescu,The coalgebra of the difference quotient and free probability, Int. Math. Res. Notices 2000, 79-106. · Zbl 0952.46038
[79] D. Voiculescu,Analytic subordination consequences of free Markovianity, Indiana Univ. Math. J. 51 (2002), 1161-1166. · Zbl 1040.46044
[80] D. Voiculescu,Free analysis questions. I. Duality transform for the coalgebra of∂X:B, Int. Math. Res. Notices 2004, 793-822. · Zbl 1084.46053
[81] D. Voiculescu,Free probability for pairs of faces I, Comm. Math. Phys. 332 (2014), 955-980. · Zbl 1317.46051
[82] J. D. Williams,Analytic function theory for operator-valued free probability, J. Reine Angew. Math. 729 (2017), 119-149. · Zbl 1381.46059
[83] J. Wysoczański,bm-independence and bm-central limit theorems associated with symmetric cones, Infin. Dimens. Anal. Quantum Probab. Related Topics 13 (2010), 461- 488. · Zbl 1246.46059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.