×

Character \(D\)-modules via Drinfeld center of Harish-Chandra bimodules. (English) Zbl 1267.20058

The main result of this paper realizes the category of character \(D\)-modules as the Drinfeld center of the Abelian monoidal category of Harish-Chandra bimodules. As an application, the authors give a new proof for Lusztig’s classification of irreducible character sheaves over \(\mathbb C\) (under a mild technical assumption), a simple description for the top cohomology of convolution of character sheaves over \(\mathbb C\) in a given cell modulo smaller cells and relate the Harish-Chandra functor to Verdier specialization in the De Concini-Procesi compactification.

MSC:

20G05 Representation theory for linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
18E10 Abelian categories, Grothendieck categories
46M05 Tensor products in functional analysis

References:

[1] Adams, J., Barbasch, D., Vogan, D.A. Jr.: The Langlands Classification and Irreducible Characters for Real Reductive Groups. Progress in Math., vol. 104. Birkhäuser, Basel (1992) · Zbl 0756.22004
[2] Beilinson, A., Bernstein, I.: A generalization of Casselman’s submodule theorem. Prog. Math. 40, 35–52 (1983) · Zbl 0526.22013
[3] Beilinson, A., Ginzburg, V.: Wall-crossing functors and D-modules. Represent. Theory 3, 1–31 (1999) · Zbl 0910.05068 · doi:10.1090/S1088-4165-99-00063-1
[4] Beilinson, A., Bernstein, I., Deligne, P.: Faisceaux pervers. Astérisque 100, 5–171 (1982) · Zbl 0536.14011
[5] Beilinson, A., Bezrukavnikov, R., Mirković, I.: Tilting exercises. Mosc. Math. J. 4(3), 547–557 (2004) · Zbl 1075.14015
[6] Ben-Zvi, D., Nadler, D.: The character theory of a complex group. arXiv:0904.1247 [math.RT] · Zbl 1325.22011
[7] Bezrukavnikov, R., Finkelberg, M., Ostrik, V.: On tensor categories attached to cells in affine Weyl groups, III. Isr. J. Math. 170, 207–234 (2009) · Zbl 1210.20004 · doi:10.1007/s11856-009-0026-9
[8] Borel, A., et al.: Algebraic D-Modules. Perspectives in Math., vol. 2. Academic Press, New York (1987) · Zbl 0642.32001
[9] De Concini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory, Montecatini, 1982. Lecture Notes in Math., vol. 996, pp. 1–44. Springer, Berlin (1983) · Zbl 0581.14041
[10] Coste, A., Gannon, T., Ruelle, P.: Finite group modular data. Nucl. Phys. B 581(3), 679–717 (2000) · Zbl 0984.81055 · doi:10.1016/S0550-3213(00)00285-6
[11] Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[12] Evens, S., Jones, B.: On the wonderful compactification. arXiv:0801.0456 [math.AG]
[13] Ginzburg, V.: Admissible modules on a symmetric space. Astérisque 173–174, 199–256 (1989)
[14] Hotta, R., Kashiwara, M.: Quotients of the Harish-Chandra system by primitive ideals. Prog. Math. 60, 185–205 (1985) · Zbl 0576.22019
[15] Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra. II. J. Algebra 65, 284–306 (1980) · Zbl 0441.17004 · doi:10.1016/0021-8693(80)90218-5
[16] Joseph, A.: On the associated variety of a primitive ideal. J. Algebra 93, 509–523 (1985) · Zbl 0594.17009 · doi:10.1016/0021-8693(85)90172-3
[17] Joseph, A.: A sum rule for scale factors in the Goldie rank polynomials. J. Algebra 118(2), 276–311 (1988) · Zbl 0699.17014 · doi:10.1016/0021-8693(88)90022-1
[18] Kashiwara, M.: Vanishing Cycle Sheaves and Holonomic Systems of Differential Equations. Lecture Notes in Math., vol. 1016, pp. 134–142. Springer, Berlin (1983) · Zbl 0566.32022
[19] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995) · Zbl 0808.17003
[20] Losev, I.: Finite dimensional representations of W-algebras. Duke Math. J. 159(1), 99–143 (2011) · Zbl 1235.17007 · doi:10.1215/00127094-1384800
[21] Losev, I., Ostrik, V.: Classification of finite dimensional irreducible modules over finite W-algebras (in preparation) · Zbl 1298.17019
[22] Lusztig, G.: Characters of Reductive Groups Over a Finite Field. Ann. Math. Studies, vol. 107. Princeton University Press, Princeton (1984) · Zbl 0556.20033
[23] Lusztig, G.: Character sheaves I. Adv. Math. 56, 193–237 (1985) · Zbl 0586.20018 · doi:10.1016/0001-8708(85)90034-9
[24] Lusztig, G.: Character sheaves II. Adv. Math. 57, 226–265 (1985) · Zbl 0586.20019 · doi:10.1016/0001-8708(85)90064-7
[25] Lusztig, G.: Character sheaves III. Adv. Math. 57, 266–315 (1985) · Zbl 0594.20031 · doi:10.1016/0001-8708(85)90065-9
[26] Lusztig, G.: Character sheaves IV. Adv. Math. 59, 1–63 (1986) · Zbl 0602.20035 · doi:10.1016/0001-8708(86)90036-8
[27] Lusztig, G.: Character sheaves V. Adv. Math. 61, 103–155 (1986) · Zbl 0602.20036 · doi:10.1016/0001-8708(86)90071-X
[28] Lusztig, G.: Cells in affine Weyl groups and tensor categories. Adv. Math. 129, 85–98 (1997) · Zbl 0884.20026 · doi:10.1006/aima.1997.1645
[29] Lusztig, G.: Convolution of almost characters. Asian J. Math. 8, 769–772 (2004) · Zbl 1072.20053 · doi:10.4310/AJM.2004.v8.n4.a23
[30] Mazorchuk, V., Stroppel, C.: Categorification of (induced) cell modules and the rough structure of generalized Verma modules. Adv. Math. 219, 1363–1426 (2008) · Zbl 1234.17007 · doi:10.1016/j.aim.2008.06.019
[31] Mazorchuk, V., Stroppel, C.: Projective-injective modules, Serre functors and symmetric algebras. J. Reine Angew. Math. 616, 131–165 (2008) · Zbl 1235.16013
[32] Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 27, 1507–1520 (2003) · Zbl 1044.18005 · doi:10.1155/S1073792803205079
[33] Ostrik, V.: Tensor categories attached to exceptional cells in Weyl groups. arXiv:1108.3060 [math.RT], v1, 9pp · Zbl 1312.20040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.