×

Subgradient algorithm for computing contraction metrics for equilibria. (English) Zbl 1525.37087

Summary: We propose a subgradient algorithm for the computation of contraction metrics for systems with an exponentially stable equilibrium. We show that for sufficiently smooth systems our method is always able to compute a contraction metric on any forward-invariant compact neighbourhood of the equilibrium, which is a subset its basin of attraction. We demonstrate the applicability of our method by constructing contraction metrics for three planar and one three-dimensional systems.

MSC:

37M22 Computational methods for attractors of dynamical systems
65P40 Numerical nonlinear stabilities in dynamical systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
37C75 Stability theory for smooth dynamical systems
39A30 Stability theory for difference equations
34D20 Stability of solutions to ordinary differential equations

Software:

ResEntSG
Full Text: DOI

References:

[1] N. P. Aghannan Rouchon, An intrinsic observer for a class of Lagrangian systems, IEEE Trans. Automat. Control, 48, 936-944 (2003) · Zbl 1364.93078 · doi:10.1109/TAC.2003.812778
[2] W. Alt, Numerische Verfahren der Konvexen, Nichtglatten Optimierung, Teubner, 2004.
[3] P. N. L. T. H. Anh An, New subgradient extragradient methods for solving monotone bilevel equilibrium problems, Optimization, 68, 2097-2122 (2019) · Zbl 1430.90529 · doi:10.1080/02331934.2019.1656204
[4] P. N. Q. H. Anh Ansari, Auxiliary principle technique for hierarchical equilibrium problems, J. Optimiz. Theory App., 188, 882-912 (2021) · Zbl 1471.65056 · doi:10.1007/s10957-021-01814-1
[5] P. N. Anh, Q. H. Ansari and H. P. Tu, DC auxiliary principle methods for solving lexicographic equilibrium problems, J. Global. Optim., 2022. · Zbl 1515.65149
[6] E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming, LIDS Technical Report 2691, (2008), 1-25. arXiv: math/0603313v1. · Zbl 1283.93217
[7] E. M. P. A. J.-J. Aylward Parrilo Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming, Automatica, 44, 2163-2170 (2008) · Zbl 1283.93217 · doi:10.1016/j.automatica.2007.12.012
[8] J. Björnsson and S. Hafstein, Efficient Lyapunov function computation for systems with multiple exponentially stable equilibria, Procedia Computer Science, 108 (2017), 655-664, Proceedings of the International Conference on Computational Science (ICCS), Zurich, Switzerland, 2017.
[9] H.-D. M. W. F. F. Chiang Hirsch Wu, Stability regions of nonlinear autonomous dynamical systems, IEEE Trans. Automat. Control, 33, 16-27 (1988) · Zbl 0639.93043 · doi:10.1109/9.357
[10] M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems, in Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002,221-264. · Zbl 1036.37030
[11] F. M. R. Fallside Patel, Step-response behaviour of a speed-control system with a back-e.m.f. nonlinearity, Proceedings of the Institution of Electrical Engineers, 112, 1979-1984 (1965) · doi:10.1049/piee.1965.0327
[12] O. P. M. S. L. F. Ferreira Louzeiro Prudente, Iteration-complexity of the subgradient method on Riemannian manifolds with lower bounded curvature, Optimization, 68, 713-729 (2019) · Zbl 1421.90114 · doi:10.1080/02331934.2018.1542532
[13] O. P. P. R. Ferreira Oliveira, Subgradient algorithm on Riemannian manifolds, J. Optim. Theory Appl., 97, 93-104 (1998) · Zbl 0907.90244 · doi:10.1023/A:1022675100677
[14] P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math. 1904, Springer, 2007.
[15] P. Giesl, Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424, 1380-1403 (2015) · Zbl 1331.34120 · doi:10.1016/j.jmaa.2014.12.010
[16] P. S. Giesl Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization, Nonlinear Anal., 86, 114-134 (2013) · Zbl 1294.34046 · doi:10.1016/j.na.2013.03.012
[17] P. S. Giesl Hafstein, Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20, 2291-2331 (2015) · Zbl 1337.37001 · doi:10.3934/dcdsb.2015.20.2291
[18] P. S. C. Giesl Hafstein Kawan, Review on contraction analysis and computation of contraction metrics, J. Comp. Dyn., 10, 1-47 (2023) · Zbl 1515.37002 · doi:10.3934/jcd.2022018
[19] P. Giesl, S. Hafstein and I. Mehrabinezhad, Computation and verification of contraction metrics for exponentially stable equilibria, J. Comput. Appl. Math., 390 (2021), Paper No. 113332, 21 pp. · Zbl 1458.65154
[20] P. S. I. Giesl Hafstein Mehrabinezhad, Computing contraction metrics for three-dimensional systems, IFAC PapersOnLine, 54, 297-303 (2021) · doi:10.1016/j.ifacol.2021.06.151
[21] P. H. Giesl Wendland, Construction of a contraction metric by meshless collocation, Discrete Cont. Dyn. Syst. Ser. B, 24, 3843-3863 (2019) · Zbl 1450.65153 · doi:10.3934/dcdsb.2018333
[22] S. F. Hafstein, A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10, 657-678 (2004) · Zbl 1070.93044 · doi:10.3934/dcds.2004.10.657
[23] W. Hahn, Stability of Motion, Springer, Berlin, 1967. · Zbl 0189.38503
[24] C. S. Hsu, Global analysis by cell mapping, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2, 727-771 (1992) · Zbl 0870.58034 · doi:10.1142/S0218127492000422
[25] L. Jocić, Planar regions of attraction, IEEE Trans. Automat. Control, 27, 708-710 (1982) · Zbl 0488.93028 · doi:10.1109/TAC.1982.1102991
[26] T. A. Johansen, Computation of Lyapunov functions for smooth, nonlinear systems using convex optimization, Automatica, 36, 1617-1626 (2000) · Zbl 0971.93069 · doi:10.1016/S0005-1098(00)00088-1
[27] C. S. F. P. Kawan Hafstein Giesl, ResEntSG: Restoration entropy estimation for dynamical systems via Riemannian metric optimization, SofwareX, 15, 100743 (2021) · doi:10.1016/j.softx.2021.100743
[28] C. S. P. Kawan Hafstein Giesl, A subgradient algorithm for data-rate optimization in the remote state estimation problem, SIAM J. Appl. Dyn. Syst., 20, 2142-2173 (2021) · Zbl 1478.93074 · doi:10.1137/21M1406453
[29] H. Khalil, Nonlinear Systems, 3rd edition, Pearson, 2002. · Zbl 1003.34002
[30] N. Krasovskiĭ, Problems of the Theory of Stability of Motion, Mir, Moskow, 1959. English translation by Stanford University Press, 1963.
[31] B. Krauskopf and H. M. Osinga, Computing Invariant Manifolds via the Continuation of Orbit Segments, 117-154, Springer Netherlands, Dordrecht, 2007. · Zbl 1126.65111
[32] M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, 1995.
[33] W. J.-J. E. Lohmiller Slotine, On contraction analysis for non-linear systems, Automatica, 34, 683-696 (1998) · Zbl 0934.93034 · doi:10.1016/S0005-1098(98)00019-3
[34] A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790. Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original, With an editorial (historical introduction) by Fuller, a biography of Lyapunov by V. I. Smirnov, and the bibliography of Lyapunov’s works collected by J. F. Barrett, Lyapunov centenary issue.
[35] G. Osipenko, Dynamical Systems, Graphs, and Algorithms, Lecture Notes in Math. 1889, Springer, 2007. · Zbl 1130.37002
[36] P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiziation, PhD thesis: California Institute of Technology Pasadena, California, 2000.
[37] M. M. Peet, Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions, IEEE Trans. Automat. Control, 54, 979-987 (2009) · Zbl 1367.93442 · doi:10.1109/TAC.2009.2017116
[38] M. M. A. Peet Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound, IEEE Trans. Automat. Control, 57, 2281-2293 (2012) · Zbl 1369.93449 · doi:10.1109/TAC.2012.2190163
[39] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297, Springer Science & Business Media, 2013.
[40] M. Vidyasagar, Nonlinear System Analysis, 2nd edition, Classics in applied mathematics, SIAM, 2002.
[41] W. Walter, Ordinary Differential Equation, Springer, 1998. · Zbl 0991.34001
[42] X. Wang, Subgradient algorithms on Riemannian manifolds of lower bounded curvatures, Optimization, 67, 179-194 (2018) · Zbl 1398.90125 · doi:10.1080/02331934.2017.1387548
[43] H. Zhang and S. Sra, First-order methods for geodesically convex optimization, JMLR: Workshop and Conference Proceedings, 49 (2016), 1-21, https://arXiv.org/abs/1602.06053.
[44] V. Zubov, Methods of A. M. Lyapunov and their Application, Translation prepared under the auspices of the United States Atomic Energy Commission; edited by Leo F. Boron, P. Noordhoff Ltd, Groningen, 1964. · Zbl 0115.30204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.