×

Local structure-preserving relaxation method for equilibrium of charged systems on unstructured meshes. (English) Zbl 07881669

Summary: This work considers charged systems described by the modified Poisson-Nernst-Planck (PNP) equations, which incorporate ionic steric effects and the Born solvation energy for dielectric inhomogeneity. Solving the equilibrium of modified PNP equations poses numerical challenges due to the emergence of sharp boundary layers caused by small Debye lengths, particularly when local ionic concentrations reach saturation. To address this, we first reformulate the problem as a constraint optimization, where the ionic concentrations on unstructured Delaunay nodes are treated as fractional particles moving along edges between nodes. The electric fields are then updated to minimize the objective free energy while satisfying the discrete Gauss law. We develop a local relaxation method on unstructured meshes that inherently respects the discrete Gauss law, ensuring curl-free electric fields. Numerical analysis demonstrates that the optimal mass of the moving fractional particles guarantees the positivity of both ionic and solvent concentrations. Additionally, the free energy of the charged system consistently decreases during successive updates of ionic concentrations and electric fields. We conduct numerical tests to validate the expected numerical accuracy, positivity, free-energy dissipation, and robustness of our method in simulating charged systems with sharp boundary layers.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A57 Electrochemistry
78A35 Motion of charged particles
49M41 PDE constrained optimization (numerical aspects)
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
35B09 Positive solutions to PDEs
81V55 Molecular physics
82C21 Dynamic continuum models (systems of particles, etc.) in time-dependent statistical mechanics

Software:

PUMIPic

References:

[1] Adler, J. H., Cavanaugh, C., Hu, X., and Zikatanov, L. T., A finite-element framework for a mimetic finite-difference discretization of Maxwell’s equations, SIAM J. Sci. Comput., 43 (2021), pp. A2638-A2659, doi:10.1137/20M1382568. · Zbl 1470.35348
[2] Baptista, M., Schmitz, R., and Dünweg, B., Simple and robust solver for the Poisson-Boltzmann equation, Phys. Rev. E, 80 (2009), 016705.
[3] Bauer, G., Gravemeier, V., and Wall, W. A., A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems, Comput. Methods Appl. Mech. Engrg., 223-224 (2012), pp. 199-210. · Zbl 1253.76054
[4] Bazant, M. Z., Thornton, K., and Ajdari, A., Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E, 70 (2004), 021506.
[5] Borukhov, I., Andelman, D., and Orland, H., Steric effects in electrolytes: A modified Poisson-Boltzmann equation, Phys. Rev. Lett., 79 (1997), pp. 435-438.
[6] Diamond, G., Smith, C. W., Zhang, C., Yoon, E., and Shephard, M. S., PUMIPic: A mesh-based approach to unstructured mesh Particle-In-Cell on GPUs, J. Parallel Distrib. Comput., 157 (2021), pp. 1-12.
[7] Ding, J., Wang, Z., and Zhou, S., Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: Application to slit-shaped nanopore conductance, J. Comput. Phys., 397 (2019), 108864. · Zbl 1453.65213
[8] Eisenberg, B., Ionic channels in biological membranes-electrostatic analysis of a natural nanotube, Contemp. Phys., 39 (1998), pp. 447-466.
[9] Horng, T., Lin, T., Liu, C., and Eisenberg, R., PNP equations with steric effects: A model of ion flow through channels, J. Phys. Chem. B, 116 (2012), pp. 11422-11441.
[10] Horng, T. L., Chen, R. S., Leonardi, M. V., Franciolini, F., and Catacuzzeno, L., A multi-scale approach to model K(+) permeation through the KcsA channel, Front. Mol. Biosci., 9 (2022), 880660.
[11] Hu, J. and Huang, X., A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations, Numer. Math., 145 (2020), pp. 77-115. · Zbl 1442.35459
[12] Kilic, M. S., Bazant, M. Z., and Ajdari, A., Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75 (2007), 021503.
[13] Li, B., Continuum electrostatics for ionic solutions with nonuniform ionic sizes, Nonlinearity, 22 (2009), pp. 811-833. · Zbl 1160.35383
[14] Li, B., Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent, SIAM J. Math. Anal., 40 (2009), pp. 2536-2566, doi:10.1137/080712350. · Zbl 1180.35504
[15] Li, B., Liu, P., Xu, Z., and Zhou, S., Ionic size effects: Generalized Boltzmann distributions, counterion stratification and modified Debye length, Nonlinearity, 26 (2013), 2899. · Zbl 1286.35233
[16] Liu, C., Wang, C., Wise, S. M., Yue, X., and Zhou, S., A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system, Math. Comp., 90 (2021), pp. 2071-2106. · Zbl 1480.65213
[17] Liu, H. and Maimaitiyiming, W., Efficient, positive, and energy stable schemes for multi-D Poisson-Nernst-Planck systems, J. Sci. Comput., 87 (2021), pp. 1-36. · Zbl 1471.35277
[18] Liu, J. and Eisenberg, B., Molecular mean-field theory of ionic solutions: A Poisson-Nernst-Planck-Bikerman model, Entropy, 22 (2020), 550.
[19] Liu, P., Ji, X., and Xu, Z., Modified Poisson-Nernst-Planck model with accurate Coulomb correlation in variable media, SIAM J. Appl. Math., 78 (2018), pp. 226-245, doi:10.1137/16M110383X. · Zbl 1386.82041
[20] Liu, X. and Lu, B., Incorporating born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K+ channels, Phys. Rev. E, 96 (2017), 062416.
[21] Lu, B. and Zhou, Y., Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: Size effects on ionic distributions and diffusion-reaction rates, Biophys. J., 100 (2011), pp. 2475-2485.
[22] Ma, M., Xu, Z., and Zhang, L., Modified Poisson-Nernst-Planck model with Coulomb and hard-sphere correlations, SIAM J. Appl. Math., 81 (2021), pp. 1645-1667, doi:10.1137/19M1310098. · Zbl 1484.82030
[23] Maggs, A. C. and Rossetto, V., Local simulation algorithms for Coulomb interactions, Phys. Rev. Lett., 88 (2002), 196402.
[24] Markowich, P. A., Ringhofer, C. A., and Schmeiser, C., Semiconductor Equations, Springer Science & Business Media, 2012.
[25] Metti, M. S., Xu, J., and Liu, C., Energetically stable discretizations for charge transport and electrokinetic models, J. Comput. Phys., 306 (2016), pp. 1-18. · Zbl 1351.78040
[26] Monk, P. B., Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003. · Zbl 1024.78009
[27] Nédélec, J.-C., Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, 2001. · Zbl 0981.35002
[28] Nocedal, J. and Wright, S., Numerical Optimization, Springer-Verlag, New York, 1999. · Zbl 0930.65067
[29] Pasichnyk, I. and Dünweg, B., Coulomb interactions via local dynamics: A molecular-dynamics algorithm, J. Phys.: Condens. Matter, 16 (2004), S3999.
[30] Qian, Y., Wang, C., and Zhou, S., A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions, J. Comput. Phys., 426 (2021), 109908. · Zbl 07510042
[31] Qiao, J., Zhang, J., Zou, J., Lu, Y., Lee, J., and Ju, M., Ion-flow field calculation of HVDC overhead lines using a high-order stabilisation technique based on Petrov-Galerkin method, IET Gener. Transm. Distrib., 12 (2018), pp. 1183-1189.
[32] Qiao, Z., Xu, Z., Yin, Q., and Zhou, S., A Maxwell-Ampère Nernst-Planck framework for modeling charge dynamics, SIAM J. Appl. Math., 83 (2023), pp. 374-393, doi:10.1137/22M1477891. · Zbl 1514.35424
[33] Qiao, Z., Xu, Z., Yin, Q., and Zhou, S., Structure-preserving numerical method for Maxwell-Ampère Nernst-Planck model, J. Comput. Phys., 475 (2023), 111845. · Zbl 07649266
[34] Rodrigo, C., Gaspar, F. J., Hu, X., and Zikatanov, L., A finite element framework for some mimetic finite difference discretizations, Comput. Math. Appl., 70 (2015), pp. 2661-2673. · Zbl 1443.65285
[35] Schoch, R. B., Han, J., and Renaud, P., Transport phenomena in nanofluidics, Rev. Modern Phys., 80 (2008), pp. 839-883.
[36] Shen, J. and Xu, J., Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations, Numer. Math., 148 (2021), pp. 671-697. · Zbl 1491.65086
[37] Stynes, M., Steady-state convection-diffusion problems, Acta Numer., 14 (2005), pp. 445-508. · Zbl 1115.65108
[38] Vabishchevich, P. N., Finite-difference approximation of mathematical physics problems on irregular grids, Comput. Methods Appl. Math., 5 (2005), pp. 294-330. · Zbl 1118.65377
[39] Wang, S., Solving convection-dominated anisotropic diffusion equations by an exponentially fitted finite volume method, Comput. Math. Appl., 44 (2002), pp. 1249-1265. · Zbl 1035.65132
[40] Wang, Z.-G., Fluctuation in electrolyte solutions: The self energy, Phys. Rev. E, 81 (2010), 021501.
[41] Yu, Y.-X. and Wu, J.-Z., Structures of hard-sphere fluids from a modified fundamental-measure theory, J. Chem. Phys., 117 (2002), pp. 10156-10164.
[42] Zhang, Q., Wang, Q., Zhang, L., and Lu, B., A class of finite element methods with averaging techniques for solving the three-dimensional drift-diffusion model in semiconductor device simulations, J. Comput. Phys., 458 (2022), 111086. · Zbl 07527713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.