×

The Gamow shell model with realistic interactions: a theoretical framework for ab initio nuclear structure at drip-lines. (English) Zbl 1514.81274

MSC:

81V35 Nuclear physics
81V70 Many-body theory; quantum Hall effect

Software:

JDQZ
Full Text: DOI

References:

[1] Wiringa, R. B.; Stoks, V. G J.; Schiavilla, R., Accurate nucleon-nucleon potential with charge-independence breaking, Phys. Rev. C, 51, 38-51 (1995) · doi:10.1103/PhysRevC.51.38
[2] Machleidt, R., High-precision, charge-dependent bonn nucleon-nucleon potential, Phys. Rev. C, 63 (2001) · doi:10.1103/PhysRevC.63.024001
[3] Navrátil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B. R., Recent developments in no-core shell-model calculations, J. Phys. G: Nucl. Part. Phys., 36 (2009) · doi:10.1088/0954-3899/36/8/083101
[4] Hergert, H.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R., Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.242501
[5] Hergert, H.; Bogner, S. K.; Morris, T. D.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R., Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes, Phys. Rev. C, 90 (2014) · doi:10.1103/PhysRevC.90.041302
[6] Bogner, S. K.; Hergert, H.; Holt, J. D.; Schwenk, A.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R., Nonperturbative shell-model interactions from the in-medium similarity renormalization group, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.142501
[7] Hergert, H.; Bogner, S. K.; Morris, T. D.; Schwenk, A.; Tsukiyama, K., The in-medium similarity renormalization group: A novel ab initio method for nuclei, Phys. Rep., 621, 165 (2016) · doi:10.1016/j.physrep.2015.12.007
[8] Hergert, H.; Bogner, S. K.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R.; Schwenk, A., In-medium similarity renormalization group with chiral two- plus three-nucleon interactions, Phys. Rev. C, 87 (2013) · doi:10.1103/PhysRevC.87.034307
[9] Hjorth-Jensen, M.; Kuo, T. T S.; Osnes, E., Realistic effective interactions for nuclear systems, Phys. Rep., 261, 125-270 (1995) · doi:10.1016/0370-1573(95)00012-6
[10] Tsunoda, N.; Otsuka, T.; Shimizu, N.; Hjorth-Jensen, M.; Takayanagi, K.; Suzuki, T., Exotic neutron-rich medium-mass nuclei with realistic nuclear forces, Phys. Rev. C, 95 (2017) · doi:10.1103/PhysRevC.95.021304
[11] Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Vertse, T., Shell model in the complex energy plane, J. Phys. G. Nucl. Part. Phys., 36 (2009) · doi:10.1088/0954-3899/36/1/013101
[12] Papadimitriou, G.; Rotureau, J.; Michel, N.; Płoszajczak, M.; Barrett, B. R., Ab initio no-core gamow shell model calculations with realistic interactions, Phys. Rev. C, 88 (2013) · doi:10.1103/PhysRevC.88.044318
[13] Hu, B. S.; Wu, Q.; Li, J. G.; Ma, Y. Z.; Sun, Z. H.; Michel, N.; Xu, F. R., An ab-initio gamow shell model approach with a core, Phys. Lett. B, 802 (2020) · doi:10.1016/j.physletb.2020.135206
[14] Newton, R. G., Scattering Theory of Waves and Particles (2013), New York: Dover Publications, New York
[15] Berggren, T., On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes, Nucl. Phys. A, 109, 287 (1968) · doi:10.1016/0375-9474(68)90593-9
[16] Moshinsky, M., Transformation brackets for harmonic oscillator functions, Nucl. Phys., 13, 116 (1959) · Zbl 0087.42902 · doi:10.1016/0029-5582(59)90143-9
[17] Balian, R.; Brézin, E., Angular-momentum reduction of the faddeev equations, Nuovo Cim., 61, 403 (1969) · doi:10.1007/BF02710946
[18] Kung, C. L.; Kuo, T. T S.; Ratcliff, K. F., Converged values of second-order core-polarization diagrams with orthogonalized-plane-wave intermediate states, Phys. Rev. C, 19, 1063 (1979) · doi:10.1103/PhysRevC.19.1063
[19] Wong, C. W.; Clément, D. M., Vector bracket and transformed wave function of a few-body state, Nucl. Phys. A, 183, 210 (1972) · doi:10.1016/0375-9474(72)90941-4
[20] Hagen, G.; Hjorth-Jensen, M.; Michel, N., Gamow shell model and realistic nucleon-nucleon interactions, Phys. Rev. C, 73 (2006) · doi:10.1103/PhysRevC.73.064307
[21] Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A. P., The shell model as a unified view of nuclear structure, Rev. Mod. Phys., 77, 427-488 (2005) · doi:10.1103/RevModPhys.77.427
[22] Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Okołowicz, J., Gamow shell model description of weakly bound nuclei and unbound nuclear states, Phys. Rev. C, 67 (2003) · doi:10.1103/PhysRevC.67.054311
[23] Sleijpen, G. J G.; van der Vorst, H. A., A jacobi-davidson iteration method for linear eigenvalue problems., SIAM J. Matrix Anal. Appl., 17, 401-425 (1996) · Zbl 0860.65023
[24] Heyde, K. L G., The Nuclear Shell Model (1994), Berlin: Springer, Berlin
[25] Michel, N.; Nazarewicz, W.; Płoszajczak, M., Proton-neutron coupling in the gamow shell model: the lithium chain, Phys. Rev. C, 70 (2004) · doi:10.1103/PhysRevC.70.064313
[26] Brillouin, L., La méthode du champ self-consistent, Act. Sci. Ind., 71, 159 (1933) · JFM 59.0798.04
[27] Jaganathen, Y.; Id Betan, R. M.; Michel, N.; Nazarewicz, W.; Płoszajczak, M., Quantified gamow shell model interaction for psd-shell nuclei, Phys. Rev. C, 96 (2017) · doi:10.1103/PhysRevC.96.054316
[28] Schollwöck, U., The density-matrix renormalization group, Rev. Mod. Phys., 77, 259-315 (2005) · Zbl 1205.82073 · doi:10.1103/RevModPhys.77.259
[29] Dukelsky, J.; Pittel, S.; Dimitrova, S. S.; Stoitsov, M. V., Density matrix renormalization group method and large-scale nuclear shell-model calculations, Phys. Rev. C, 65 (2002) · doi:10.1103/PhysRevC.65.054319
[30] Pittel, S.; Sandulescu, N., Density matrix renormalization group and the nuclear shell model, Phys. Rev. C, 73 (2006) · doi:10.1103/PhysRevC.73.014301
[31] Thakur, B.; Pittel, S.; Sandulescu, N., Density matrix renormalization group study of^48Cr and^56Ni, Phys. Rev. C, 78 (2008) · doi:10.1103/PhysRevC.78.041303
[32] Legeza, Ö.; Veis, L.; Poves, A.; Dukelsky, J., Advanced density matrix renormalization group method for nuclear structure calculations, Phys. Rev. C, 92 (2015) · doi:10.1103/PhysRevC.92.051303
[33] White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863 (1992) · doi:10.1103/PhysRevLett.69.2863
[34] White, S. R., Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 48, 10345 (1993) · doi:10.1103/PhysRevB.48.10345
[35] Rotureau, J.; Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Dukelsky, J., Density matrix renormalization group approach for many-body open quantum systems, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.110603
[36] Rotureau, J.; Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Dukelsky, J., Density matrix renormalization group approach to two-fluid open many-fermion systems, Phys. Rev. C, 79 (2009) · doi:10.1103/PhysRevC.79.014304
[37] Bogner, S. K.; Kuo, T. T S.; Schwenk, A., Model-independent low momentum nucleon interaction from phase shift equivalence, Phys. Rep., 386, 1 (2003) · doi:10.1016/j.physrep.2003.07.001
[38] Jurgenson, E. D.; Navrátil, P.; Furnstahl, R. J., Evolution of nuclear many-body forces with the similarity renormalization group, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.082501
[39] Roth, R.; Langhammer, J.; Calci, A.; Binder, S.; Navrátil, P., Similarity-transformed chiral nn + 3n interactions for the ab initio description of^12C and^16O, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.072501
[40] Hjorth-Jensen, M.; Jansen, G. R.
[41] Entem, D. R.; Machleidt, R., Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory, Phys. Rev. C, 68 (2003) · doi:10.1103/PhysRevC.68.041001
[42] Bogner, S. K.; Furnstahl, R. J.; Schwenk, A., From low-momentum interactions to nuclear structure, Prog. Part. Nucl. Phys., 65, 94 (2010) · doi:10.1016/j.ppnp.2010.03.001
[43] Lawson, R. D., Theory of the Nuclear Shell Model (1980), Clarendon Press: Oxford, Clarendon Press
[44] Moiseyev, N.; Certain, P. R.; Weinhold, F., Resonance properties of complex-rotated hamiltonians, Mol. Phys., 36, 1613-1630 (1978) · doi:10.1080/00268977800102631
[45] Li, J. G.; Michel, N.; Zuo, W.; Xu, F. R., Resonances of a = 4t = 1 isospin triplet states within the ab initio no-core gamow shell model, Phys. Rev. C, 104 (2021) · doi:10.1103/PhysRevC.104.024319
[46] Nollett, K. M., Ab initio calculations of nuclear widths via an integral relation, Phys. Rev. C, 86 (2012) · doi:10.1103/PhysRevC.86.044330
[47] Nollett, K. M.; Pieper, S. C.; Wiringa, R. B.; Carlson, J.; Hale, G. M., Quantum monte carlo calculations of neutron-α scattering, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.022502
[48] Audi, G.; Wapstra, A. H.; Thibault, C., The ame2003 atomic mass evaluation: (i). evaluation of input data, adjustment procedures, Nucl. Phys. A, 729, 337 (2003) · doi:10.1016/j.nuclphysa.2003.11.003
[49] Tilley, D. R.; Cheves, C. M.; Godwin, J. L.; Hale, G. M.; Hofmann, H. M.; Kelley, J. H.; Sheu, C. G.; Weller, H. R., Energy levels of light nuclei a = 5, 6, 7, Nucl. Phys. A, 708, 163 (2002) · doi:10.1016/S0375-9474(02)00597-3
[50] Hale, G. M.; Brown, R. E.; Jarmie, N., Pole structure of the j^π = 3/2^+ resonance in^5He, Phys. Rev. Lett., 59, 763-766 (1987) · doi:10.1103/PhysRevLett.59.763
[51] Csótó, A.; Hale, G. M., S-matrix and R-matrix determination of the low-energy^5 he and^5 li resonance parameters, Phys. Rev. C, 55, 536-539 (1997) · doi:10.1103/PhysRevC.55.536
[52] Lane, A. M.; Thomas, R. G., R-matrix theory of nuclear reactions, Rev. Mod. Phys., 30, 257-353 (1958) · doi:10.1103/RevModPhys.30.257
[53] Okołowicz, J.; Michel, N.; Nazarewicz, W.; Płoszajczak, M., Asymptotic normalization coefficients and continuum coupling in mirror nuclei, Phys. Rev. C, 85 (2012) · doi:10.1103/PhysRevC.85.064320
[54] Nollett, K. M.; Wiringa, R. B., Asymptotic normalization coefficients from ab initio calculations, Phys. Rev. C, 83 (2011) · doi:10.1103/PhysRevC.83.041001
[55] Mukhamedzhanov, A. M.; Tribble, R. E., Connection between asymptotic normalization coefficients, subthreshold bound states, and resonances, Phys. Rev. C, 59, 3418-3424 (1999) · doi:10.1103/PhysRevC.59.3418
[56] Jennings, B. K., Non-observability of spectroscopic factors (2011)
[57] Michel, N.; Nazarewicz, W.; Płoszajczak, M., Threshold effects in multichannel coupling and spectroscopic factors in exotic nuclei, Phys. Rev., 75 (2007) · doi:10.1103/PhysRevC.75.031301
[58] Navrátil, P.; Bertulani, C. A.; Caurier, E.,^7Be(p, γ)^8B s factor from ab initio no-core shell model wave functions, Phys. Rev. C, 73 (2006) · doi:10.1103/PhysRevC.73.065801
[59] Jennings, B. K., Non-observability of spectroscopic factors, Phys. Rev. C, 70 (2011) · doi:10.48550/arXiv.1102.3721
[60] Timofeyuk, N. K., New insight into the observation of spectroscopic strength reduction in atomic nuclei: Implication for the physical meaning of spectroscopic factors, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.242501
[61] Jensen, Ø.; Hagen, G.; Hjorth-Jensen, M.; Brown, B. A.; Gade, A., Quenching of spectroscopic factors for proton removal in oxygen isotopes, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.032501
[62] Kisamori, K., Candidate resonant tetraneutron state populated by the^4He(^8He,^8Be) reaction, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.052501
[63] Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; Mazur, I. A.; Roth, R.; Vary, J. P., Prediction for a four-neutron resonance, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.182502
[64] Gandolfi, S.; Hammer, H. W.; Klos, P.; Lynn, J. E.; Schwenk, A., Is a trineutron resonance lower in energy than a tetraneutron resonance?, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.232501
[65] Fossez, K.; Rotureau, J.; Michel, N.; Płoszajczak, M., Can tetraneutron be a narrow resonance?, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.032501
[66] Pieper, S. C., Can modern nuclear hamiltonians tolerate a bound tetraneutron?, Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.252501
[67] Gandolfi, S.; Hammer, H. W.; Klos, P.; Lynn, J. E.; Schwenk, A., Gandolfi et al reply, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.069202
[68] Li, J. G.; Michel, N.; Hu, B. S.; Zuo, W.; Xu, F. R., Ab initio no-core gamow shell-model calculations of multineutron systems, Phys. Rev. C, 100 (2019) · doi:10.1103/PhysRevC.100.054313
[69] Hiyama, E.; Lazauskas, R.; Carbonell, J.; Kamimura, M., Possibility of generating a 4-neutron resonance with a t = 3/2 isospin 3-neutron force, Phys. Rev. C, 93 (2016) · doi:10.1103/PhysRevC.93.044004
[70] Cerny, J.; Détraz, C.; Pehl, R. H., li^4 and the excited levels of he^4, Phys. Rev. Lett., 15, 300-303 (1965) · doi:10.1103/PhysRevLett.15.300
[71] Tilley, D. R.; Weller, H. R.; Hale, G. M., Energy levels of light nuclei a = 4, Nucl. Phys. A, 541, 1-104 (1992) · doi:10.1016/0375-9474(92)90635-W
[72] Werntz, C.; Brennan, J. G., Existence of h4 and li4, Phys. Lett., 6, 113-115 (1963) · doi:10.1016/0031-9163(63)90243-9
[73] Blilie, C. L., Measurement of isospin mixing in^4He and its implications for charge-symmetry breaking, Phys. Rev. Lett., 57, 543-546 (1986) · doi:10.1103/PhysRevLett.57.543
[74] Florizone, R. E J.; Asai, J.; Feldman, G.; Hallin, E. L.; Skopik, D. M.; Vogt, J. M.; Haight, R. C.; Sterbenz, S. M., Simultaneous measurement of the (γ, p)/(γ, n) cross-section ratio in^4He as a test of charge symmetry, Phys. Rev. Lett., 72, 3476-3479 (1994) · doi:10.1103/PhysRevLett.72.3476
[75] Hu, B. S.; Wu, Q.; Sun, Z. H.; Xu, F. R., Ab initio gamow in-medium similarity renormalization group with resonance and continuum, Phys. Rev. C, 99 (2019) · doi:10.1103/PhysRevC.99.061302
[76] Krenciglowa, A. M.; Kuo, T. T S., Convergence of effective hamiltonian expansion and partial summations of folded diagrams, Nucl. Phys. A, 235, 171 (1974) · doi:10.1016/0375-9474(74)90184-5
[77] Takayanagi, K., Nucl. Phys. A, 852, 61 (2011) · doi:10.1016/j.nuclphysa.2011.01.003
[78] Tsunoda, N.; Takayanagi, K.; Hjorth-Jensen, M.; Otsuka, T., Multi-shell effective interactions, Phys. Rev. C, 89 (2014) · doi:10.1103/PhysRevC.89.024313
[79] Ekström, A., Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.192502
[80] Otsuka, T.; Suzuki, T.; Holt, J. D.; Schwenk, A.; Akaishi, Y., Three-body forces and the limit of oxygen isotopes, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.032501
[81] Luo, Y. A.; Okołowicz, J.; Płoszajczak, M.; Michel, N., Shell model embedded in the continuum for binding systematics in neutron-rich isotopes of oxygen and fluor (2002)
[82] Michel, N.; Nazarewicz, W.; Okołowicz, J.; Płoszajczak, M.; Rotureau, J., Shell model description of nuclei far from stability, Acta Phys. Pol. B, 35, 1249 (2004)
[83] Brown, B. A.; Richter, W. A., New ‘usd’ hamiltonians for the sd shell, Phys. Rev. C, 74 (2006) · doi:10.1103/PhysRevC.74.034315
[84] Stroberg, S. R.; Hergert, H.; Holt, J. D.; Bogner, S. K.; Schwenk, A., Ground and excited states of doubly open-shell nuclei from ab initio valence-space hamiltonians, Phys. Rev. C, 93 (2016) · doi:10.1103/PhysRevC.93.051301
[85] Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Machleidt, R.; Papenbrock, T., Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.242501
[86] Grigorenko, L. V.; Mukha, I. G.; Scheidenberger, C.; Zhukov, M. V., Two-neutron radioactivity and four-nucleon emission from exotic nuclei, Phys. Rev. C, 84 (2011) · doi:10.1103/PhysRevC.84.021303
[87] Sakurai, H., Evidence for particle stability of 31f and particle instability of 25n and 28o, Phys. Lett. B, 448, 180-184 (1999) · doi:10.1016/S0370-2693(99)00015-5
[88] Lukyanov, S. M., Experimental evidence for the particle stability of 34ne and 37na, J. Phys. G. Nucl. Part. Phys., 28, L41-L45 (2002) · doi:10.1088/0954-3899/28/9/101
[89] Zhang, S.; Li, J. G.; Hu, B. S.; Xu, F. R.; Michel, N.; Ma, Y. Z.; Yuan, Q.; Cheng, Z. H.; Zhang, Y. H., Ab initio Gamow shell model with three-nucleon force for A = 16 mirror nuclei
[90] Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X., The ame2016 atomic mass evaluation (ii). tables, graphs and references, Chin. Phys. C, 41 (2017) · doi:10.1088/1674-1137/41/3/030003
[91] Fossez, K.; Rotureau, J.; Michel, N.; Nazarewicz, W., Continuum effects in neutron-drip-line oxygen isotopes, Phys. Rev. C, 96 (2017) · doi:10.1103/PhysRevC.96.024308
[92] Utsuno, Y.; Otsuka, T.; Mizusaki, T.; Honma, M., Varying shell gap and deformation in n ∼ 20 unstable nuclei studied by the monte carlo shell model, Phys. Rev. C, 60 (1999) · doi:10.1103/PhysRevC.60.054315
[93] Bond, J. E.; Firk, F. W K., Determination of r-function and physical-state parameters for n-4he elastic scattering below 21 mev, Nucl. Phys. A, 287, 343 (1977) · doi:10.1016/0375-9474(77)90499-7
[94] Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H., The nubase evaluation of nuclear and decay properties, Nucl. Phys. A, 279, 3 (2003) · doi:10.1016/j.nuclphysa.2003.11.001
[95] Smith, D. B.; Jarmie, N.; Lockett, A. M., he^3 + t reactions, Phys. Rev., 129, 785-790 (1963) · doi:10.1103/PhysRev.129.785
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.