×

Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems. (English) Zbl 1353.37155

Summary: A new method for exploring multi-wing chaotic dynamics of some nonlinear systems with special structure is presented in this paper. Using this method, the mechanism of a class of simplest three-dimensional continuous memristive systems that can generate one-to-four-wing chaotic attractors is theoretically investigated in detail. Moreover, the numerical simulations including phase portraits, Lyapunov exponents, and bifurcation diagrams further illustrate the effectiveness of the new method.

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37M05 Simulation of dynamical systems
94C05 Analytic circuit theory
Full Text: DOI

References:

[1] Kerr, R.A.: Meteorology—order from chaos, power from dissipation in planetary flows. Science 317, 449-449 (2007) · doi:10.1126/science.317.5837.449
[2] Murphy, P.: Chaos theory as a model for managing issues and crises. Public Relat. Rev. 22, 95-113 (1996) · doi:10.1016/S0363-8111(96)90001-6
[3] Wang, S.J., Jie, Q.L.: General features of quantum chaos and its relevance to nuclear physics. Phys. Rev. C 63, 014309 (2001) · doi:10.1103/PhysRevC.63.014309
[4] Meiss, J.D.: Physics of chaos in Hamiltonian systems. Nature 398, 303-303 (1999) · doi:10.1038/18603
[5] Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Annu. Rev. Control 29, 33-56 (2005) · doi:10.1016/j.arcontrol.2005.01.001
[6] Hirata, Y., Oku, M., Aihara, K.: Chaos in neurons and its application: perspective of chaos engineering. Chaos 22, 047511 (2012) · doi:10.1063/1.4738191
[7] Guegan, D.: Chaos in economics and finance. Annu. Rev. Control 33, 89-93 (2009) · doi:10.1016/j.arcontrol.2009.01.002
[8] Oxley, L., George, D.A.R.: Economics on the edge of chaos: some pitfalls of linearizing complex systems. Environ. Model. Softw. 22, 580-589 (2007) · doi:10.1016/j.envsoft.2005.12.018
[9] Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology and Chemistry. Perseus Publishing, New York (2001)
[10] Cramer, J.A., Booksh, K.S.: Chaos theory in chemistry and chemometrics: a review. J. Chemom. 20, 447-454 (2006) · doi:10.1002/cem.1003
[11] Misteli, T.: Cell biology: nuclear order out of chaos. Nature 456, 333-334 (2008) · doi:10.1038/456333a
[12] Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I., Kurashige, T., Shiki, M., Yoshimori, S., Yoshimura, K., Davis, P.: Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2, 728-732 (2008) · doi:10.1038/nphoton.2008.227
[13] Zhang, X.P., Zhao, Z.M.: Chaos-based image encryption with total shuffling and bidirectional diffusion. Nonlinear Dyn. 75, 319-330 (2014) · doi:10.1007/s11071-013-1068-4
[14] Fu, C., Chen, J.J., Zou, H., Meng, W.H., Zhan, Y.F., Yu, Y.W.: A chaos-based digital image encryption scheme with an improved diffusion strategy. Opt. Express 20, 2363-2378 (2012) · doi:10.1364/OE.20.002363
[15] Zou, Y.L., Zhu, J.: Controlling the chaotic n-scroll Chua’s circuit with two low pass filters. Chaos Solitons Fractals 29, 400-406 (2006) · Zbl 1097.94040 · doi:10.1016/j.chaos.2005.08.038
[16] Xu, F., Yu, P.: Global stabilization and synchronization of N-scroll chaotic attractors in a modified Chua’s circuit with hyperbolic tangent function. Int. J. Bifurcat. Chaos 19, 2563-2572 (2009) · Zbl 1175.34064 · doi:10.1142/S0218127409024311
[17] Grassi, G., Severance, F.L., Miller, D.A.: Multi-wing hyperchaotic attractors from coupled Lorenz systems. Chaos Solitons Fractals 41, 284-291 (2009) · Zbl 1198.37045 · doi:10.1016/j.chaos.2007.12.003
[18] Yu, S.M., Tang, W.K.S., Lü, J.H., Chen, G.R.: Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type systems. Int. J. Bifurcat. Chaos 20, 29-41 (2010) · doi:10.1142/S0218127410025387
[19] Zhang, C.X., Yu, S.M.: On constructing complex grid multi-wing hyperchaotic system: theoretical design and circuit implementation. Int. J. Circuit Theory Appl. 41, 221-237 (2013) · doi:10.1002/cta.736
[20] Wang, C.H., Xu, H., Yu, F.: A novel approach for constructing high-order Chua’s circuit with multi-directional multi-scroll chaotic attractors. Int. J. Bifurcat. Chaos 23, 1350022 (2013) · Zbl 1270.34141 · doi:10.1142/S0218127413500223
[21] Zhang, C.X., Yu, S.M.: Generation of grid multi-scroll chaotic attractors via switching piecewise linear controller. Phys. Lett. A 374, 3029-3037 (2010) · Zbl 1237.93092 · doi:10.1016/j.physleta.2010.05.043
[22] Wang, X.Y., Lin, D., Wang, Z.J.: Controlling the uncertain multi-scroll critical chaotic system with input nonlinear using sliding mode control. Mod. Phys. Lett. B 23, 2021-2034 (2009) · Zbl 1168.37312 · doi:10.1142/S0217984909020187
[23] Lü, J.H., Murali, K., Sinha, S., Leung, H., Aziz-Alaoui, M.A.: Generating multi-scroll chaotic attractors by thresholding. Phys. Lett. A 372, 3234-3239 (2008) · Zbl 1220.37024 · doi:10.1016/j.physleta.2008.01.065
[24] Han, F.L., Lü, J.H., Yu, X.H., Chen, G.R., Feng, Y.: Generating multi-scroll chaotic attractors via a linear second-order hysteresis system. Dyn. Contin. Discrete Ser. B 12, 95-110 (2005) · Zbl 1117.34044
[25] Lü, J.H., Han, F.L., Yu, X.H., Chen, G.R.: Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method. Automatica 40, 1677-1687 (2004) · Zbl 1162.93353 · doi:10.1016/j.automatica.2004.06.001
[26] Luo, X.H., Tu, Z.W., Liu, X.R., Cai, C., Liang, Y.L., Gong, P.: Implementation of a novel two-attractor grid multi-scroll chaotic system. Chin. Phys. B 19, 070510 (2010) · Zbl 1249.37027 · doi:10.1088/1674-1056/19/7/070510
[27] O’Donoghue, K., Kennedy, M.P., Forbes, P., Qu, M., Jones, S.: A fast and simple implementation of Chua’s oscillator with cubic-like nonlinearity. Int. J. Bifurcat. Chaos 15, 2959-2971 (2005) · Zbl 1096.94051 · doi:10.1142/S0218127405013800
[28] Zhong, G.Q.: Implementation of Chua’s circuit with a cubic nonlinearity. IEEE Trans. Circuits Syst. I 41, 934-940 (1994) · doi:10.1109/81.340866
[29] Tang, W.K.S., Zhong, G.Q., Chen, G., Man, K.F.: Generation of n-scroll attractors via sine function. IEEE Trans. Circuits Syst. I 48, 1369-1372 (2001) · doi:10.1109/81.964432
[30] Elwakil, A.S., Salama, K.N., Kennedy, M.: An equation for generating chaos and its monolithic implementation. Int. J. Bifurcat. Chaos 12, 2885-2895 (2002) · doi:10.1142/S0218127402006205
[31] Wang, L.: Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors. Chaos 19, 013107 (2009) · Zbl 1311.37028 · doi:10.1063/1.3070648
[32] Chen, Z.Q., Yang, Y., Yuan, Z.Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38, 1187-1196 (2008) · Zbl 1152.37312 · doi:10.1016/j.chaos.2007.01.058
[33] Cang, S.J., Qi, G.Y., Chen, Z.Q.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515-527 (2010) · Zbl 1183.70049
[34] Wang, Z.H., Qi, G.Y., Sun, Y.X., van Wyk, B.J., van Wyk, M.A.: A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems. Nonlinear Dyn. 60, 443-457 (2010) · Zbl 1189.34100 · doi:10.1007/s11071-009-9607-8
[35] Liu, X.Y.: A new 3D four-wing chaotic system with cubic nonlinearity and its circuit implementation. Chin. Phys.Lett. 26, 090504 (2009)
[36] Baghious, E., Jarry, P.: Lorenz attractor from differential equations with piecewise-linear terms. Int. J. Bifurcat. Chaos 3, 201-210 (1993) · Zbl 0873.34045 · doi:10.1142/S0218127493000155
[37] Elwakil, A.S., Kennedy, M.P.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices: IEEE Tans. Circuits Syst. 48, 289-307 (2001) · Zbl 0998.94048
[38] Xue, W., Qi, G.Y., Mu, J.J., Jia, H.Y., Guo, Y.L.: Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system. Chin. Phys. B 22, 080504 (2013) · doi:10.1088/1674-1056/22/8/080504
[39] Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13-24 (2013) · doi:10.1038/nnano.2012.240
[40] Kim, S., Jeong, H.Y., Kim, S.K., Choi, S.Y., Lee, K.J.: Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438-5442 (2011) · doi:10.1021/nl203206h
[41] Li, H.F., Wang, L.D., Duan, S.K.: A memristor-based scroll chaotic system—design, analysis and circuit implementation. Int. J. Bifurcat. Chaos 24, 1450099 (2014) · Zbl 1300.34110 · doi:10.1142/S0218127414500990
[42] Teng, L., Iu, H.H.C., Wang, X.Y., Wang, X.K.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77, 231-241 (2014) · doi:10.1007/s11071-014-1286-4
[43] Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18, 3183-3206 (2008) · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[44] Pumariño, A., Rodríguez, J.A.: Coexistence and Persistence of Strange Attractors. Springer, Berlin (1997) · Zbl 0877.58041
[45] Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, Hoboken (2002) · Zbl 1174.37300
[46] Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuits Syst. I 18, 507-519 (1971)
[47] Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209-223 (1976) · doi:10.1109/PROC.1976.10092
[48] Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos 20, 1567-1580 (2010) · doi:10.1142/S0218127410027076
[49] Cang, S.J., Wu, A.G., Wang, Z.L., Wang, Z.H., Chen, Z.Q.: A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums. Nonlinear Dyn (2015). doi:10.1007/s11071-015-2388-3 · doi:10.1007/s11071-015-2388-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.