×

Labyrinth chaos: revisiting the elegant, chaotic, and hyperchaotic walks. (English) Zbl 1460.37035

The authors start by recalling the notion of Rössler-Thomas circuits and the occurence of chaos and hyperchaos in dynamical systems. Then the dynamics in the neighborhood of the fixed points of labyrinth walks is described. In addition, it is presented how there can exist chaos and hyperchaos in absence of attractors. They consider the system given by \[\dot x_1=\sin x_2~, ~\dot x_2=\sin x_3~,~ \dot x_3=\sin x_1.\tag{1}\] as illustrative example. Section 4 deals with a system of coupled 3D labyrinth walk and Thomas-Rössler systems arranged in a simple ring topology with nonlocal coupling. Furthermore, the role of labyrinth walks in the emergence of chimera-like states is highlighted.
In Section 5, it is proved that system (1) is volume-preserving, but it is not force-conservative. As the authors claim, “this makes it a fine and elegantly simple example of a low-dimensional volume-preserving, chaotic system with no attractors and with only unstable fixed points.”
In Section 6, possible future directions of work are discussed.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C28 Complex behavior and chaotic systems of ordinary differential equations
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
94C05 Analytic circuit theory

References:

[1] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1987), Addison-Wesley
[2] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[3] Andreev, A. V., Balanov, A. G., Fromhold, T. M., Greenaway, M. T., Hramov, A. E., Li, W., Makarov, V. V., and Zagoskin, A. M., “Chaos and hyperchaos in driven interacting quantum systems,” arXiv:quant-ph:1907.03602 (2020).
[4] Antonopoulos, C. G.; Basios, V.; Demongeot, J.; Nardone, P.; Thomas, R., Linear and nonlinear arabesques: A study of closed chains of negative 2-element circuits, Int. J. Bifurcat. Chaos, 23, 1330033 (2013) · Zbl 1277.34058 · doi:10.1142/S0218127413300334
[5] Arnold, V. I., Kozlov, V., Neishtadt, A. I., and Khukhro, E., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia of Mathematical Sciences (Springer, 2010).
[6] Basios, V.; Antonopoulos, C. G., Hyperchaos and labyrinth chaos: Revisiting Thomas-Rössler systems, J. Theor. Biol., 460, 153-159 (2019) · Zbl 1406.92233 · doi:10.1016/j.jtbi.2018.10.025
[7] Chlouverakis, K. E.; Sprott, J. C., Hyperlabyrinth chaos: From chaotic walks to spatiotemporal chaos, Chaos, 17, 023110 (2007) · Zbl 1159.37339 · doi:10.1063/1.2721237
[8] Chunguang, L.; Guanrong, C., Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341, 55-61 (2004) · doi:10.1016/j.physa.2004.04.113
[9] Dombre, T.; Frisch, U.; Greene, J. M.; Hénon, M.; Mehr, A.; Soward, A. M., Chaotic streamlines in the ABC flows, J. Fluid Mech., 167, 353-391 (1986) · Zbl 0622.76027 · doi:10.1017/S0022112086002859
[10] Friedlander, S.; Gilbert, A.; Vishik, M., Hydrodynamic instability for certain ABC flows, Geophys. Astrophys. Fluid Dyn., 73, 97-107 (1993) · doi:10.1080/03091929308203622
[11] Gaspard, P.; Nicolis, G., What can we learn from homoclinic orbits in chaotic dynamics?, J. Stat. Phys., 31, 499-518 (1983) · Zbl 0587.58035 · doi:10.1007/BF01019496
[12] Gilmore, R.; Lefranc, M., The Topology of Chaos (2002), Wiley · Zbl 1019.37016
[13] Gilmore, R.; Letellier, C.; Lefranc, M., Chaos topology, Scholarpedia, 3, 7, 4592 (2008) · doi:10.4249/scholarpedia.4592
[14] Goldstein, H., Classical Mechanics (1980), Addison-Wesley: Addison-Wesley, Boston · Zbl 0491.70001
[15] Hiley, B. J., “Active information and teleportation,” in Epistemological and Experimental Perspectives on Quantum Physics, edited by D. Greenberger et al. (Kluwer, the Netherlands, 1999), pp. 113-126. · Zbl 0979.81016
[16] Hiley, B. J., “From the Heisenberg picture to Bohm: A new perspective on active information and its relation to Shannon information,” in Quantum Theory: Reconsidering of Foundations, edited by A. Khrennikov (Växjö University Press, 2002), pp. 141-162.
[17] Hitzer, E. M. S., “Imaginary eigenvalues and complex eigenvectors explained by real geometry,” in Applications of Geometric Algebra in Computer Science and Engineering, edited by L. Dorst, C. Doran, and J. Lasenby (Birkhäuser, Boston, MA, 2002). · Zbl 1160.15306
[18] Hizanidis, J.; Kouvaris, N.; Zamora-López, G.; Guilera, A. D.; Antonopoulos, C. G., Chimera-like states in modular neural networks, Sci. Rep., 6, 19845 (2016) · doi:10.1038/srep19845
[19] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press · Zbl 0914.90287
[20] Ikeda, K.; Matsumoto, K., High-dimensional chaotic behavior in systems with time-delayed feedback, Physica D, 29, 1-2, 223-235 (1987) · Zbl 0626.58014 · doi:10.1016/0167-2789(87)90058-3
[21] Kaneko, K., From globally coupled maps to complex-systems biology, Chaos, 25, 097608 (2015) · doi:10.1063/1.4916925
[22] Kaufman, M.; Soulé, C.; Thomas, R., A new necessary condition on interaction graphs for multistationarity, J. Theor. Biol., 248, 675-685 (2007) · Zbl 1451.92146 · doi:10.1016/j.jtbi.2007.06.016
[23] Kaufman, M.; Thomas, R., Emergence of complex behavior from simple circuit structures, C. R. Acad. Sci. Paris Biol., 326, 205-214 (2003) · doi:10.1016/S1631-0691(03)00063-5
[24] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 4, 380-385 (2002)
[25] Letellier, C.; Rössler, O., Rössler attractor, Scholarpedia, 1, 10, 1721 (2006) · doi:10.4249/scholarpedia.1721
[26] Letellier, C.; Rössler, O., Hyperchaos, Scholarpedia, 2, 8, 1936 (2007) · doi:10.4249/scholarpedia.1936
[27] Manos, T.; Skokos, C.; Antonopoulos, C. G., Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method, Int. J. Bifurcat. Chaos, 22, 9, 1250218 (2012) · Zbl 1258.65105 · doi:10.1142/S0218127412502185
[28] Martyna, G. J.; Klein, M. L.; Tuckerman, M., Nosé-Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys., 97, 4, 2635-2643 (1992) · doi:10.1063/1.463940
[29] Nicolis, G.; Basios, V., Chaos, Information Processing and Paradoxical Games (2015), World Scientific · Zbl 1310.37003
[30] Nicolis, G.; Nicolis, C., Foundations of Complex Systems—Nonlinear Dynamics, Statistical Physics, Information and Prediction (2010), World Scientific · Zbl 0645.60069
[31] Nolte, D. D., Introduction to Modern Dynamics: Chaos, Networks, Space and Time (2015), Oxford University Press · Zbl 1357.70018
[32] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 3, R67-R87 (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[33] Parastesh, F.; Jafari, S.; Azarnoush, H.; Hatef, B.; Bountis, A., Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems, Chaos Solitons Fractals, 110, 203-208 (2018) · Zbl 1391.34083 · doi:10.1016/j.chaos.2018.03.025
[34] Rössler, O., An equation for hyperchaos, Phys. Lett. A, 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[35] Rössler, O. and Letellier, C., Chaos: The World of Nonperiodic Oscillations, Understanding Complex Systems Series (Springer, 2020). · Zbl 1439.34003
[36] Schmidt, A.; Kasimatis, T.; Hizanidis, J.; Provata, A.; Hövel, P., Chimera patterns in two-dimensional networks of coupled neurons, Phys. Rev. E, 95, 032224 (2017) · doi:10.1103/PhysRevE.95.032224
[37] Sigalas, E., Li, A. B. J., and Antonopoulos, C. G., “Emergence of chimera-like states in prefrontal-cortex macaque intracranial recordings,” in International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore (IEEE, 2018).
[38] Skokos, C.; Antonopoulos, C.; Bountis, T. C.; Vrahatis, M. N., Detecting order and chaos in Hamiltonian systems by the SALI method, J. Phys. A: Math. Gen., 36, 6269-6284 (2004) · doi:10.1088/0305-4470/37/24/006
[39] Skokos, C.; Bountis, T. C.; Antonopoulos, C., Geometrical properties of local dynamics in Hamiltonian systems: The generalized alignment index (GALI) method, Physica D, 231, 30-54 (2007) · Zbl 1117.37034 · doi:10.1016/j.physd.2007.04.004
[40] Soulé, C., Graphic requirements for multistationarity, ComPlexUs, 1, 123-133 (2003) · doi:10.1159/000076100
[41] Sprott, J. C., Elegant Chaos: Algebraically Simple Chaotic Flows (2010), World Scientific · Zbl 1222.37005
[42] Sprott, J. C.; Chlouverakis, K. E., Labyrinth chaos, Int. J. Bifurcat. Chaos, 17, 6, 2097-2108 (2007) · Zbl 1141.37330 · doi:10.1142/S0218127407018245
[43] Stevenson, A. F., Note on the existence and determination of a vector potential, Q. Appl. Math., 12, 2, 194-198 (1954) · Zbl 0057.33103 · doi:10.1090/qam/62886
[44] Teschl, G., Ordinary Differential Equations and Dynamical Systems (2012), American Mathematical Society · Zbl 1263.34002
[45] Thieffry, D.; Kaufman, M., Prologue to the special issue of JTB dedicated to the memory of René Thomas (1928-2017): A journey through biological circuits, logical puzzles and complex dynamics, J. Theor. Biol., 474, 42-47 (2019) · Zbl 1414.00022 · doi:10.1016/j.jtbi.2019.04.021
[46] Thomas, R., Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, ‘labyrinth chaos’, Int. J. Bifurcat. Chaos, 9, 10, 1889-1905 (1999) · Zbl 1089.37512 · doi:10.1142/S0218127499001383
[47] Thomas, R.; Basios, V.; Eiswirth, M.; Kruel, T.; Rössler, O., Hyperchaos of arbitrary order generated by a single feedback circuit, and the emergence of chaotic walks, Chaos, 14, 3, 669-674 (2004) · Zbl 1080.37037 · doi:10.1063/1.1772551
[48] Thomas, R.; Nardone, P., A further understanding of phase space partition diagrams, Int. J. Bifurcat. Chaos, 19, 3, 785-804 (2009) · Zbl 1167.34355 · doi:10.1142/S0218127409023305
[49] Thomas, R.; Rössler, O., Genèse de formes, Rev. Quest. Sci., 177, 271-287 (2006)
[50] Tuckerman, M. E.; Liu, Y.; Ciccotti, G.; Martyna, G. J., Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, J. Chem. Phys., 115, 1678-1702 (2001) · doi:10.1063/1.1378321
[51] Tuckerman, M. E.; Mundy, C. J.; Martyna, G. J., On the classical statistical mechanics of non-Hamiltonian systems, Europhys. Lett., 45, 149-155 (1999) · doi:10.1209/epl/i1999-00139-0
[52] Zarfaty, L.; Peletskyi, A.; Barkai, E.; Denisov, S., Infinite horizon billiards: Transport at the border between Gauss and Lévy universality classes, Phys. Rev. E, 100, 042140 (2019) · doi:10.1103/PhysRevE.100.042140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.