×

Calderón’s type reproducing formula related to the \(q\)-Dunkl two wavelet theory. (English) Zbl 1540.44003

Summary: In this paper, using some elements of the \(q\)-harmonic analysis associated to the \(q\)-Dunkl operator introduced by N. Bettaibi and R. Bettaieb in [Tamsui Oxf. J. Math. Sci. 25, No. 2, 177–205 (2009; Zbl 1179.33020)], for fixed \(0< q <1\), the notion of a \(q\)-Dunkl two-wavelet is introduced. The resolution of the identity formula for the \(q\)-Dunkl continuous wavelet transform is then formulated and proved. Calderón’s type reproducing formula in the context of the \(q\)-Dunkl two wavelet theory is proved.

MSC:

44A05 General integral transforms
33B15 Gamma, beta and polygamma functions
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

Citations:

Zbl 1179.33020

References:

[1] N. Bettaibi and R. H. Bettaieb, q-Analogue of the Dunkl transform on the real line, Tamsui Oxf. J. Math. Sci., 25(2007), 117-205.
[2] N. Bettaibi, R. H. Bettaieb and S. Bouaziz, Wavelet transform associated with the q-Dunkl operator, Tamsui Oxf. J. Math. Sci., 26(2010), 77-101. · Zbl 1210.42007
[3] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math., 24(1964), 113-190. · Zbl 0204.13703
[4] R. Daher and O. Tyr, An analog of Titchmarsh’s theorem for the q-Dunkl transform in the space L 2 q; (R q ), J. Pseudo-Di¤er. Oper. Appl., 11(2020), 1933-1949. · Zbl 1475.33008
[5] R. Daher and O. Tyr, Growth properties of the q-Dunkl transform in the space L p q; (R q ; jxj 2 +1 d q x), · Zbl 1539.41009
[6] Ramanujan J., 57(2022), 119-134.
[7] R. Daher and O. Tyr, Modulus of smoothness and theorems concerning approximation in the space L 2 q; (R q ) with power weight, Mediterr. J. Math., 18(2021), 1-16. · Zbl 1467.41009
[8] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics. SIAM Publication, Philadelphia, 1992. · Zbl 0776.42018
[9] L. Dhaouadi, On the q-Bessel Fourier transform, Bull. Math. Anal. Appl., 5(2013), 42-60. · Zbl 1314.33016
[10] E. M. Dynkin, Methods of the Theory of Singular Integrals: Littlewood-Paley Theory and its Appli-cations, Commutative Harmonic Analysis, IV, 97-194, Encyclopaedia Math. Sci., 42, Springer, Berlin, 1992. · Zbl 0736.42014
[11] A. Fitouhi, K. Trimèche and J. L. Lions, Transmutation Operators and Generalized Continuous Wavelets, Preprint, Faculty of Sciences of Tunis, 1995.
[12] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton, 1982. · Zbl 0508.42025
[13] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. · Zbl 0757.42006
[14] F. H. Jackson, On q-De…nite Integrals, J. Pure Appl. Math., 41(1910), 193-203. · JFM 41.0317.04
[15] M. Holschneider and P. Tchamitchian, Pointwise analysis of Riemann’s “di¤erentiable” function, Invent. Math., 105(1991), 157-175. · Zbl 0741.26004
[16] M. E. H. Ismail, The zeros of basic Bessel functions, the function J v+ax (x), and associated orthogonal polynomials, J. Math. Anal. Appl., 86(1982), 1-19. · Zbl 0483.33004
[17] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Appli-cations, Cambridge Univ. Press, Cambridge (1990) · Zbl 0695.33001
[18] A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Anal., 15(1984), 723-736. · Zbl 0578.42007
[19] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1992. · Zbl 0776.42019
[20] M. A. Mourou and K. Trimèche, Inversion of the Weyl integral transform and the Radon transform on R n using generalized wavelets, C. R. Math. Rep. Acad. Sci. Canada, 18(1996), 80-84. · Zbl 0863.44003
[21] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, NewYork, 2002. · Zbl 0986.05001
[22] T. H. Koornwinder, The Continuous Wavelet Transform, Wavelets: an elementary treatment of theory and applications, 27-48, Ser. Approx. Decompos., 1, World Sci. Publ., River Edge, NJ, 1993. · Zbl 0832.00013
[23] R. L. Rubin, A q 2 -analogue operator for q 2 -analogue Fourier analysis, J. Math. Anal. Appl., 212(1997), 571-582. · Zbl 0877.33009
[24] R. L. Rubin, Duhamel solutions of non-homogeneous q 2 -analogue wave equations, Proc. of Amer. Math. Soc., 135(2007), 777-785. · Zbl 1109.39021
[25] K. Trimèche, Inversion of the Dunkl intertwining operator and its dual using Dunkl wavelets, Rocky Mt. J. Math. 32(2002), 889-918. · Zbl 1034.44005
[26] K. Trimèche, Wavelets on Hypergroups, in “Proceeding of the International Conference on Harmonic Analysis, New Delhi, India, (1996).” · Zbl 0948.43003
[27] O. Tyr, R. Daher, S. El Ouadih and O. El Fourchi, On the Jackson-type inequalities in approximation theory connected to the q-Dunkl operators in the weighted space L 2 q; (R q ; jxj 2 +1 d q x), Bol. Soc. Mat. Mex., 27(2021), 1-21. · Zbl 1478.41002
[28] M. W. Wong, Localization Operators on the A¢ ne Group and Paracommutators. In: Progress in Analysis, pp. 663-669. World Scienti…c (2003).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.