×

Functional calculus via Laplace transform and equations with infinitely many derivatives. (English) Zbl 1314.34135

Summary: We study nonlocal linear equations of the form \(f(\partial_t)\phi = J(t),\; t \geq 0\), in which \(f\) is an entire function. We develop an appropriate functional calculus via Laplace transform, we solve the aforementioned equation completely in the space of exponentially bounded functions, and we analyze the delicate issue of the formulation of initial value problems for nonlocal equations.{
©2010 American Institute of Physics}

MSC:

34K05 General theory of functional-differential equations
34K17 Transformation and reduction of functional-differential equations and systems, normal forms
44A10 Laplace transform
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
83F05 Relativistic cosmology

References:

[1] Arendt, W.; Batty, C. J. K.; Hieber, M.; Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems (2001) · Zbl 0978.34001
[2] Barnaby, N.; Kamran, N., Dynamics with infinitely many derivatives: the initial value problem, J. High Energy Phys., 2008, 2, 008 · Zbl 1329.83204 · doi:10.1088/1126-6708/2008/02/008
[3] Barnaby, N.; Kamran, N., Dynamics with infinitely many derivatives: variable coefficient equations, J. High Energy Phys., 2008, 12, 002 · Zbl 1329.83204
[4] Bartkowski, K.; Górka, P., One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, 41, 355201 (2008) · Zbl 1146.81021 · doi:10.1088/1751-8113/41/35/355201
[5] Calcagni, G.; Montobbio, M.; Nardelli, G., Route to nonlocal cosmology, Phys. Rev. D, 76, 126001 (2007) · Zbl 1282.81143 · doi:10.1103/PhysRevD.76.126001
[6] Calcagni, G.; Montobbio, M.; Nardelli, G., Localization of nonlocal theories, Phys. Lett. B, 662, 285 (2008) · Zbl 1282.81143 · doi:10.1016/j.physletb.2008.03.024
[7] Carmichael, R. D., Linear differential equations of infinite order, Bull. Am. Math. Soc., 42, 193 (1936) · Zbl 0014.26004 · doi:10.1090/S0002-9904-1936-06263-4
[8] Doetsch, G., Introduction to the Theory and Application of the Laplace Transformation (1974) · Zbl 0278.44001
[9] Gerasimov, A. A.; Shatashvili, S. L., On exact tachyon potential in open string field theory, J. High Energy Phys., 2000, 10, 034 · doi:10.1088/1126-6708/2000/10/034
[10] Gomis, J.; Kamimura, K.; Ramírez, T., Physical degrees of freedom of non-local theories, Nucl. Phys. B, 696, 263 (2004) · Zbl 1236.81148 · doi:10.1016/j.nuclphysb.2004.06.046
[11] Górka, P., Prado, H., and Reyes, E. G., “Nonlinear equations with infinitely many derivatives,” Complex Analysis and Operator Theory (to be published), doi: 10.1007/s11785-009-0043-z. · Zbl 1215.35165
[12] Górka, P., Prado, H., and Reyes, E. G. (unpublished).
[13] Górka, P., Prado, H., and Reyes, E. G. (unpublished).
[14] Hayashi, N.; Kaikina, E. I., Nonlinear Theory of Pseudodifferential Equations on a Half-Line (2004) · Zbl 1063.35154
[15] Hille, E., Analytic Function Theory, 1 (1959) · Zbl 0088.05204
[16] Kostelecký, V. A.; Samuel, S., On a nonperturbative vacuum for the open bosonic string, Nucl. Phys. B, 336, 263 (1990) · doi:10.1016/0550-3213(90)90111-P
[17] Moeller, N.; Zwiebach, B., Dynamics with infinitely many time derivatives and rolling tachyons, J. High Energy Phys., 2002, 10, 034 · doi:10.1088/1126-6708/2002/10/034
[18] Nelson, E., Analytic vectors, Ann. Math., 70, 572 (1959) · Zbl 0091.10704 · doi:10.2307/1970331
[19] Prokhorenko, D. V.
[20] Vladimirov, V. S., The equation of the \(<mml:math display=''inline`` overflow=''scroll``>\)-adic open string for the scalar tachyon field, Izv. Math., 69, 487 (2005) · Zbl 1086.81073 · doi:10.1070/IM2005v069n03ABEH000536
[21] 21.Vladimirov, V. S. and Volovich, Ya. I., “Nonlinear dynamics equation in p-adic string theory,” Teor. Mat. Fiz.TMFZAL0564-6162138, 355 (2004)10.1023/B:TAMP.0000018447.02723.29; Vladimirov, V. S. and Volovich, Ya. I., [Theor. Math. Phys.TMPHAH0040-5779138, 297 (2004)]. · Zbl 1178.81174
[22] Vladimirov, V. S.; Volovich, I. V.; Zelenov, E. I., -adic Analysis and Mathematical Physics (1994) · Zbl 0812.46076
[23] Volovich, Y., Numerical study of nonlinear equations with an infinite number of derivatives, J. Phys. A, 36, 8685 (2003) · Zbl 1040.35088 · doi:10.1088/0305-4470/36/32/309
[24] Witten, E., Noncommutative geometry and string field theory, Nucl. Phys. B, 268, 253 (1986) · doi:10.1016/0550-3213(86)90155-0
[25] In the sense that it depends on the existence of a unique solution to the system of linear equations (28) appearing in the proof of Theorem 4.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.