×

Localization operators of the wavelet transform associated to the Riemann-Liouville operator. (English) Zbl 1345.44001

Summary: We study the continuous wavelet transform \(T_\psi\) associated with the Riemann-Liouville operator. Next, we investigate the localization operators for \(T_\psi\); in particular we prove that they are in the Schatten-von Neumann class.

MSC:

44A15 Special integral transforms (Legendre, Hilbert, etc.)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
Full Text: DOI

References:

[1] 1. B. Amri and L. T. Rachdi, Beckner logarithmic uncertainty principle for the Riemann-Liouville operator, Internat. J. Math.24(9) (2013), Article ID: 1350070, 29 pp. [Abstract] genRefLink(128, ’S0129167X16500361BIB001’, ’000329392100004’); · Zbl 1282.42007
[2] 2. L. E. Andersson, On the determination of a function from spherical averages, SIAM. J. Math. Anal.19(1) (1988) 214-232. genRefLink(16, ’S0129167X16500361BIB002’, ’10.1137
[3] 3. L. E. Andersson and H. Helesten, An inverse method for the processing of synthetic aperture radar data, Inverse Probl.3(1) (1987) 111-124. genRefLink(16, ’S0129167X16500361BIB003’, ’10.1088
[4] 4. C. Baccar, N. B. Hamadi and L. T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Int. J. Math. Math. Sci.2006 (2006) 1-26. genRefLink(16, ’S0129167X16500361BIB004’, ’10.1155 · Zbl 1131.44002
[5] 5. C. Baccar, N. B. Hamadi and L. T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal.5(1) (2008) 65-83. · Zbl 1163.44002
[6] 6. C. Baccar and L. T. Rachdi, Spaces of DLp-type and a convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl.1(3) (2009) 16-41. · Zbl 1312.42028
[7] 7. P. Balazs, Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inform. Process.6(2) (2008) 315-330. [Abstract] genRefLink(128, ’S0129167X16500361BIB007’, ’000254425300011’); · Zbl 1268.42052
[8] 8. P. Balazs, D. Bayer and A. Rahimi, Multipliers for continuous frames in Hilbert spaces, J. Phys. A: Math. Theor.45(24) (2012), page 244023. genRefLink(16, ’S0129167X16500361BIB008’, ’10.1088
[9] 9. W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, Vol 20 (Walter de Gruyter, 1995). genRefLink(16, ’S0129167X16500361BIB009’, ’10.1515 · Zbl 0828.43005
[10] 10. J. K. Cohen and N. Bleistein, Velocity inversion procedure for acoustic waves, Geophysics44(6) (1979) 1077-1087. genRefLink(16, ’S0129167X16500361BIB010’, ’10.1190
[11] 11. E. Cordero and K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal.205(1) (2003) 107-131. genRefLink(16, ’S0129167X16500361BIB011’, ’10.1016
[12] 12. I. Daubechies, Time-frequency localization operators: A geometric phase space approach, IEEE Trans. Inf. Theory34(4) (1988) 605-612. genRefLink(16, ’S0129167X16500361BIB012’, ’10.1109
[13] 13. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory36(5) (1990) 961-1005. genRefLink(16, ’S0129167X16500361BIB013’, ’10.1109
[14] 14. I. Daubechies and T. Paul, Time-frequency localisation operators – a geometric phase space approach: II. The use of dilations, Inverse Probl.4(3) (1988) 661-680. genRefLink(16, ’S0129167X16500361BIB014’, ’10.1088
[15] 15. F. De Mari, H. Feichtinger and K. Nowak, Uniform eigenvalue estimates for time-frequency localization operators, J. London Math. Soc.65(3) (2002) 720-732. genRefLink(16, ’S0129167X16500361BIB015’, ’10.1112 · Zbl 1033.47021
[16] 16. F. De Mari and K. Nowak, Localization type Berezin-Toeplitz operators on bounded symmetric domains, J. Geom. Anal.12(1) (2002) 9-27. genRefLink(16, ’S0129167X16500361BIB016’, ’10.1007 · Zbl 1040.47017
[17] 17. J. A. Fawcett, Inversion of N-dimensional spherical averages, SIAM. J. Appl. Math.45(2) (1985) 336-341. genRefLink(16, ’S0129167X16500361BIB017’, ’10.1137
[18] 18. G. B. Folland, Real Analysis: Modern Techniques and Their Applications (John Wiley & Sons, 2013). · Zbl 0924.28001
[19] 19. K. Gröchenig, Foundations of Time-Frequency Analysis (Springer Science & Business Media, 2001). genRefLink(16, ’S0129167X16500361BIB019’, ’10.1007
[20] 20. N. B. Hamadi and L. T. Rachdi, Weyl transforms associated with the Riemann-Liouville operator, Int. J. Math. Math. Sci.2006 (2006) 1-19, Article ID: 94768. genRefLink(16, ’S0129167X16500361BIB020’, ’10.1155 · Zbl 1146.35426
[21] 21. M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D 30430-3.2, National Defense Research Institute, FOA, Linköping, Sweden (1986).
[22] 22. T. H. Koornwinder, The continuous wavelet transform, in Wavelets: An Elementary Treatment of Theory and Applications (World Scientific, Singapore, 1993), pp. 27-48. [Abstract]
[23] 23. R. S. Laugesen, N. Weaver, G. L. Weiss and E. N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal.12(1) (2002) 89-102. genRefLink(16, ’S0129167X16500361BIB023’, ’10.1007 · Zbl 1043.42032
[24] 24. N. N. Lebedev, Special Functions and Their Applications (Courier Dover Publications, 1972). · Zbl 0271.33001
[25] 25. Y. Meyer, Wavelets and Operators (Press Syndicate of University of Cambridge, 1995).
[26] 26. S. Omri and L. Rachdi, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville operator, J. Inequal. Pure Appl. Math.9(88) (2008) 23. · Zbl 1159.42305
[27] 27. J. Ramanathan and P. Topiwala, Time-frequency localization via the Weyl correspondence, SIAM J. Math. Anal.24(5) (1993) 1378-1393. genRefLink(16, ’S0129167X16500361BIB027’, ’10.1137
[28] 28. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc.83 (1956) 482-492. genRefLink(16, ’S0129167X16500361BIB028’, ’10.1090 · Zbl 0072.32402
[29] 29. K. Trimèche, Transformation intgrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0;+, J. Math. Pures Appl.60 (1981) 51-98. genRefLink(128, ’S0129167X16500361BIB029’, ’A1981LM86700002’);
[30] 30. K. Trimèche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harm. Anal.4 (1997) 97-112. genRefLink(16, ’S0129167X16500361BIB030’, ’10.1006
[31] 31. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1995). · Zbl 0849.33001
[32] 32. M. W. Wong, Wavelet Transforms and Localization Operators, Vol. 136 (Springer Science & Business Media, 2002). genRefLink(16, ’S0129167X16500361BIB032’, ’10.1007 · Zbl 1016.42017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.