×

An FCT finite element scheme for ideal MHD equations in 1D and 2D. (English) Zbl 1415.76447

Summary: This paper presents an implicit finite element (FE) scheme for solving the equations of ideal magnetohydrodynamics in 1D and 2D. The continuous Galerkin approximation is constrained using a flux-corrected transport (FCT) algorithm. The underlying low-order scheme is constructed using a Rusanov-type artificial viscosity operator based on scalar dissipation proportional to the fast wave speed. The accuracy of the low-order solution can be improved using a shock detector which makes it possible to prelimit the added viscosity in a monotonicity-preserving iterative manner. At the FCT correction step, the changes of conserved quantities are limited in a way which guarantees positivity preservation for the density and thermal pressure. Divergence-free magnetic fields are extracted using projections of the FCT predictor into staggered finite element spaces forming exact sequences. In the 2D case, the magnetic field is projected into the space of Raviart-Thomas finite elements. Numerical studies for standard test problems are performed to verify the ability of the proposed algorithms to enforce relevant constraints in applications to ideal MHD flows.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences
Full Text: DOI

References:

[1] Adam, J. C.; Gourdin Serveniere, A.; Nédélec, J.-C.; Raviart, P.-A., Study of an implicit scheme for integrating Maxwell’s equations, Comput. Methods Appl. Mech. Eng., 22, 3, 327-346 (1980) · Zbl 0433.73067
[2] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.; Wells, G., The FEniCS project version 1.5, Arch. Num. Softw., 3, 100 (2015)
[3] Badia, S.; Bonilla, J., Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization, Comput. Methods Appl. Mech. Eng., 313, 133-158 (2017) · Zbl 1439.65104
[4] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 1, 149 (2004)
[5] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993 (2010) · Zbl 1303.76140
[6] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517 (2012)
[7] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes — with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208 (2014) · Zbl 1349.76426
[8] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 2, 270-292 (1999) · Zbl 0936.76051
[9] Bochev, P. B.; Robinson, A. C., Matching algorithms with physics: exact sequences of finite element spaces, (Collected Lectures on the Preservation of Stability under Discretization. Collected Lectures on the Preservation of Stability under Discretization, Fort Collins, CO, 2001 (2002), SIAM: SIAM Philadelphia, PA), 145-165 · Zbl 1494.78020
[10] Boris, J. P.; Book, D. L., Flux-corrected transport, I: SHASTA, a fluid transport algorithm that works, Comput. Phys.. Comput. Phys., J. Comput. Phys., 135, 2, 170-186 (1997), with an introduction by Steven T. Zalesak, Commemoration of the 30th anniversary of J. Comput. Phys · Zbl 0939.76074
[11] Brackbill, J. U.; Barnes, D. C., The effect of nonzero \(\nabla \cdot B\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 3, 426-430 (1980) · Zbl 0429.76079
[12] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[13] Brio, M.; Wu, C. C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 2, 400-422 (1988) · Zbl 0637.76125
[15] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[16] DeVore, C. R., Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comput. Phys., 92, 1, 142-160 (1991) · Zbl 0716.76056
[17] Dietachmayer, G. S., A comparison and evaluation of some positive definite advection schemes, (Computational Techniques and Applications (1986), Elsevier), 217-232 · Zbl 0625.65085
[18] Donea, J.; Huerta, A., Finite Element Methods for Flow Problems (2003), John Wiley & Sons
[19] Evans, C.; Hawley, J. F., Simulation of magnetohydrodynamic flow: a constrained transport method, Astrophys. J., 332, 659-677 (1988)
[20] Fletcher, C. A.J., The group finite element formulation, Comput. Methods Appl. Mech. Eng., 37, 2, 225-244 (1983)
[21] Guermond, J.-L.; Popov, B., Invariant domains and first-order continuous finite element approximation for hyperbolic systems, SIAM J. Numer. Anal., 54, 2466-2489 (2016) · Zbl 1346.65050
[22] Helzel, C.; Rossmanith, J. A.; Taetz, Bertram, An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations, J. Comput. Phys., 230, 10, 3803-3829 (2011) · Zbl 1369.76061
[23] Hu, K.; Ma, Y.; Xu, J., Stable finite element methods preserving \(\nabla \cdot b = 0\) exactly for MHD models, Numer. Math., 1-26 (2016)
[24] Kirby, R. C.; Logg, A.; Rognes, M. E.; Terrel, A. R., Common and unusual finite elements, (Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (2012), Springer: Springer Berlin, Heidelberg), 95-119 · Zbl 1247.65105
[25] Kuzmin, D., Algebraic flux correction, I: scalar conservation laws, (Kuzmin, D.; Löhner, R.; Turek, S., Flux-Corrected Transport, Scientific Computation (2012), Springer: Springer Netherlands), 145-192
[26] Kuzmin, D., Algebraic flux correction, II: compressible flow problems, (Kuzmin, D.; Löhner, R.; Turek, S., Flux-Corrected Transport, Scientific Computation (2012), Springer: Springer Netherlands), 193-238
[27] Kuzmin, D.; Möller, M.; Shadid, J. N.; Shashkov, M., Failsafe flux limiting and constrained data projections for equations of gas dynamics, J. Comput. Phys., 229, 23, 8766-8779 (November 2010) · Zbl 1282.76161
[28] Lohmann, C.; Kuzmin, D., Synchronized flux limiting for gas dynamics variables, J. Comput. Phys., 326, 973-990 (2016) · Zbl 1373.76286
[29] Orszag, S. A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129 (1979)
[30] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuwy, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309 (1999) · Zbl 0952.76045
[31] Rognes, M. E.; Kirby, R. C.; Logg, A., Efficient assembly of \(H(div)\) and \(H(curl)\) conforming finite elements, SIAM J. Sci. Comput., 31, 6, 4130-4151 (2009/10) · Zbl 1206.65248
[32] Rossmanith, J. A., High-order discontinuous Galerkin finite element methods with globally divergence-free constrained transport for ideal MHD (October 2013)
[33] Rossmanith, J. A., An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput., 28, 1766-1797 (2006) · Zbl 1344.76092
[34] Ryu, D.; Jones, T. W., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow, Astrophys. J., 442, 1, 228-258 (1995)
[35] Sayas, F.-J., From Raviart-Thomas to HDG: a personal voyage (July 2013), Preprint
[36] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 1-31 (1978) · Zbl 0387.76063
[37] Stone, J. M.; Gardiner, T. A.; Teuben, P.; Hawley, J. F.; Simon, J. B., Athena: a new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 1, 137 (2008)
[38] Tóth, G., The \(\nabla \cdot B = 0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 2, 605-652 (2000) · Zbl 0980.76051
[39] Tóth, G.; Odstrčil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. Comput. Phys., 128, 1, 82-100 (1996) · Zbl 0860.76061
[40] Wesenberg, M., Efficient MHD Riemann solvers for simulations on unstructured triangular grids, J. Numer. Math., 10, 1, 37-71 (2002) · Zbl 1037.76038
[41] Yalim, M. S.; Vanden Abeele, D.; Lani, A.; Quintino, T.; Deconinck, H., A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach, J. Comput. Phys., 230, 15, 6136-6154 (2011) · Zbl 1419.76470
[42] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.