×

Pointillisme à la Signac and construction of a quantum fiber bundle over convex bodies. (English) Zbl 1528.81180

Summary: We use the notion of polar duality from convex geometry and the theory of Lagrangian planes from symplectic geometry to construct a fiber bundle over ellipsoids that can be viewed as a quantum-mechanical substitute for the classical symplectic phase space. The total space of this fiber bundle consists of geometric quantum states, products of convex bodies carried by Lagrangian planes by their polar duals with respect to a second transversal Lagrangian plane. Using the theory of the John ellipsoid we relate these geometric quantum states to the notion of “quantum blobs” introduced in previous work; quantum blobs are the smallest symplectic invariant regions of the phase space compatible with the uncertainty principle. We show that the set of equivalence classes of unitarily related geometric quantum states is in a one-to-one correspondence with the set of all Gaussian wavepackets. We emphasize that the uncertainty principle appears in this paper as geometric property of the states we define, and is not expressed in terms of variances and covariances, the use of which was criticized by J. B. M. Uffink and J. Hilgevoord [Found. Phys. 15, No. 9, 925–944 (1985; doi:10.1007/BF00739034)].

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
81P55 Special bases (entangled, mutual unbiased, etc.)
14J42 Holomorphic symplectic varieties, hyper-Kähler varieties
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
15A04 Linear transformations, semilinear transformations
55S40 Sectioning fiber spaces and bundles in algebraic topology
32M25 Complex vector fields, holomorphic foliations, \(\mathbb{C}\)-actions

References:

[1] Arnold, VI, Mathematical Methods of Classical Mechanics (2013), New York: Springer, New York
[2] Artstein, S.; Klartag, B.; Milman, V., The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika, 51, 1-2, 33-48 (2004) · Zbl 1121.52021 · doi:10.1112/S0025579300015497
[3] Artstein-Avidan, S.; Milman, VD; Ostrover, Y., The M-ellipsoid, symplectic capacities and volume, Comment. Math. Helv., 83, 2, 359-369 (2008) · Zbl 1138.53060 · doi:10.4171/CMH/127
[4] Artstein-Avidan, S.; Karasev, R.; Ostrover, Y., From symplectic measurements to the Mahler conjecture, Duke Math. J., 163, 11, 2003-2022 (2014) · Zbl 1330.52004 · doi:10.1215/00127094-2794999
[5] Aubrun, G.; Szarek, SJ, Alice and Bob Meet Banach (2017), Providence: American Mathematical Society, Providence · Zbl 1402.46001
[6] Ball, KM, Ellipsoids of maximal volume in convex bodies, Geom. Dedicata., 41, 2, 241-250 (1992) · Zbl 0747.52007 · doi:10.1007/BF00182424
[7] Bastiaans, MJ, Wigner distribution function and its application to first-order optics, J. Opt. Soc. Am., 69, 1710 (1979) · doi:10.1364/JOSA.69.001710
[8] Butterfield, J., Against pointillisme about mechanics, Br. J. Philos. Sci., 57, 4, 709-753 (2006) · doi:10.1093/bjps/axl026
[9] Butterfield, J., Against Pointillisme About Geometry, 181-222 (2013), Berlin: De Gruyter, Berlin
[10] Campi, S.; Gronchi, P., On volume product inequalities for convex sets, Proc. Am. Math. Soc., 134, 8, 2393-2402 (2006) · Zbl 1095.52002 · doi:10.1090/S0002-9939-06-08241-4
[11] de Gosson, M., Symplectic Geometry and Quantum Mechanics (2006), Cham: Springer, Cham · Zbl 1098.81004 · doi:10.1007/3-7643-7575-2
[12] de Gosson, M., The symplectic camel and the uncertainty principle: the tip of an iceberg?, Found. Phys., 99, 194 (2009) · Zbl 1165.81030 · doi:10.1007/s10701-009-9272-2
[13] de Gosson, M., Quantum blobs, Found. Phys., 43, 4, 440-457 (2013) · Zbl 1269.81073 · doi:10.1007/s10701-012-9636-x
[14] de Gosson, M., The Wigner Transform. Advanced Textbooks in Mathematics (2017), Singapore: World Scientific, Singapore · Zbl 1372.81009 · doi:10.1142/q0089
[15] de Gosson, M., Quantum polar duality and the symplectic camel: a new geometric approach to quantization, Found. Phys., 51, 60 (2021) · Zbl 1479.81037 · doi:10.1007/s10701-021-00465-6
[16] de Gosson, M., Polar duality between pairs of transversal Lagrangian planes. Applications to Uncertainty Principles, Bull. Sci. Math., 179, 103171 (2022) · Zbl 1495.52004 · doi:10.1016/j.bulsci.2022.103171
[17] de Gosson, M.; Luef, F., Symplectic capacities and the geometry of uncertainty: the irruption of symplectic topology in classical and quantum mechanics, Phys. Rep., 484, 131-179 (2009) · doi:10.1016/j.physrep.2009.08.001
[18] Gazeau, J-P, From classical to quantum models: the regularizing role of integrals, symmetry and probabilities, Found. Phys., 48, 11, 1648-1667 (2018) · Zbl 1411.81038 · doi:10.1007/s10701-018-0219-3
[19] Hilgevoord, J., The standard deviation is not an adequate measure of quantum uncertainty, Am. J. Phys., 70, 10, 983 (2002) · doi:10.1119/1.1503380
[20] Hilgevoord, J.; Uffink, JBM, Uncertainty principle and uncertainty relations, Found. Phys., 15, 9, 925 (1985) · doi:10.1007/BF00739034
[21] Littlejohn, RG, The semiclassical evolution of wave packets, Phys. Rep., 138, 4-5, 193-291 (1986) · doi:10.1016/0370-1573(86)90103-1
[22] Moyal, A., Maverick Mathematician (2006), Canberra: ANU E Press, Canberra
[23] Rockafellar, HT, Convex Analysis. Princeton Landmarks in Mathematics (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401
[24] Santaló, LA, Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugaliae. Math., 8, 155-161 (1949) · Zbl 0038.35702
[25] Steenrod, N., The Topology of Fibre. Bundles Princeton Mathematical Series (1999), Princeton: PUP, Princeton · Zbl 0942.55002
[26] Vershynin, R.: Lectures in Geometric Functional Analysis. Unpublished manuscript. https://www.math.uci.edu/ rvershyn/papers/GFA-book.pdf · Zbl 1370.94269
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.