×

A strongly mass conservative method for the coupled Brinkman-Darcy flow and transport. (English) Zbl 1529.65094

Summary: In this paper, a strongly mass conservative and stabilizer-free scheme is designed and analyzed for the coupled Brinkman-Darcy flow and transport. The flow equations are discretized by using a strongly mass conservative scheme in mixed formulation with a suitable incorporation of the interface conditions. In particular, the interface conditions can be incorporated into the discrete formulation naturally without introducing additional variables. Moreover, the proposed scheme behaves uniformly robust for various values of viscosity. A novel upwinding staggered discontinuous Galerkin scheme in mixed form is exploited to solve the transport equation, where the boundary correction terms are added to improve the stability. A rigorous convergence analysis is carried out for the approximation of the flow equations. The velocity error is shown to be independent of the pressure and thus confirms the pressure-robustness. Stability and a priori error estimates are also obtained for the approximation of the transport equation; moreover, we are able to achieve sharp stability and convergence error estimates thanks to the strong mass conservation preserved by our scheme. In particular, the stability estimate depends only on the true velocity on the inflow boundary rather than on the approximated velocity. Several numerical experiments are presented to verify the theoretical findings and demonstrate the performances of the method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics
35Q49 Transport equations

Software:

DistMesh

References:

[1] Alvarez, M., Gatica, G. N., and Ruiz-Baier, R., A vorticity-based fully-mixed formulation for the 3D Brinkman-Darcy problem, Comput. Methods Appl. Mech. Engrg., 307 (2016), pp. 68-95. · Zbl 1436.76020
[2] Alvarez, M., Gatica, G. N., and Ruiz-Baier, R., A mixed-primal finite element method for the coupling of Brinkman-Darcy flow and nonlinear transport, IMA J. Numer. Anal., (2020), doi:10.1093/imanum/drz060. · Zbl 1460.65138
[3] Apel, T., Kempf, V., Linke, A., and Merdon, C., A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, IMA J. Numer. Anal., (2021).
[4] Brezzi, F., Douglas, J., and Marini, L. D., Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217-235. · Zbl 0599.65072
[5] Cesmelioglu, A., Chidyagwai, P., and Rivière, B., Continuous and Discontinuous Finite Element Methods for Coupled Surface-Subsurface Flow and Transport Problems, Technical report, Rice University, 2010.
[6] Chidyagwai, P. and Rivière, B., On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3806-3820. · Zbl 1230.76023
[7] Chung, E. T. and Engquist, B., Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions, SIAM J. Numer. Anal., 47 (2009), pp. 3820-3848. · Zbl 1279.65117
[8] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[9] Cockburn, B. and Dawson, C., Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, in Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, , 2000, pp. 225-238. · Zbl 0960.65107
[10] Dawson, C., Sun, S., and Wheeler, M. F., Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 2565-2580. · Zbl 1067.76565
[11] Durán, R. G., Error analysis in \({L}^p \leqslant p \leqslant \infty \), for mixed finite element methods for linear and quasi-linear elliptic problems, ESAIM Math. Model. Numer. Anal., 22 (1988), pp. 371-387. · Zbl 0698.65060
[12] Ervin, V., Kubacki, M., Layton, W., Moraiti, M., Si, Z., and Trenchea, C., Partitioned penalty methods for the transport equation in the evolutionary Stokes-Darcy-transport problem, Numer. Methods Partial Differential Equations, 35 (2019), pp. 349-374. · Zbl 1419.76437
[13] Ervin, V. J., Jenkins, E. W., and Sun, S., Coupled generalized nonlinear Stokes flow with flow through a porous medium, SIAM J. Numer. Anal., 47 (2009), pp. 929-952. · Zbl 1279.76032
[14] Feng, X. and Karakashian, O. A., Two-level additive schwarz methods for a discontinuous galerkin approximation of second order elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1343-1365. · Zbl 1007.65104
[15] Frerichs-Mihov, D. and Merdon, C., Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem, IMA J. Numer. Anal., 42 (2020), pp. 597-619. · Zbl 1523.65093
[16] Fu, G., Jin, Y., and Qiu, W., Parameter-free superconvergent \({H}(\text{div})\)-conforming HDG methods for the Brinkman equations, IMA J. Numer. Anal., 39 (2018), pp. 957-982. · Zbl 1466.65187
[17] Fu, G. and Lehrenfeld, C., A strongly conservative hybrid DG/mixed FEM for the coupling of Stokes and Darcy flow, J. Sci. Comput., 77 (2018), pp. 1605-1620. · Zbl 1406.65112
[18] Gatica, G. N., A Simple Introduction to the Mixed Finite Element Method: Theory and Applications, , Springer, Cham, Switzerland, 2014. · Zbl 1293.65152
[19] Gatica, G. N., Oyarzúa, R., and Sayas, F.-J., Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comp., 80 (2011), pp. 1911-1948. · Zbl 1301.76047
[20] Girault, V. and Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. · Zbl 0585.65077
[21] Grisvard, P., Elliptic Problems in Nonsmooth Domains, SIAM, Philadelphia, 2011. · Zbl 1231.35002
[22] Guzmán, J. and Neilan, M., A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., 32 (2012), pp. 1484-1508. · Zbl 1332.76057
[23] Kashiwabara, T., Oikawa, I., and Zhou, G., Penalty method with Crouzeix-Raviart approximation for the Stokes equations under slip boundary condition, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 869-891. · Zbl 1465.65140
[24] Könnö, J. and Stenberg, R., H(div)-conforming finite elements for the Brinkman problem, Math. Models Methods Appl. Sci., 21 (2011), pp. 2227-2248. · Zbl 1331.76115
[25] Könnö, J. and Stenberg, R., Numerical computations with H(div)-finite elements for the Brinkman problem, Comput. Geosci., 16 (2012), pp. 139-158. · Zbl 1348.76100
[26] Layton, W. J., Schieweck, F., and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), pp. 2195-2218. · Zbl 1037.76014
[27] Lederer, P. L., Linke, A., Merdon, C., and Schöberl, J., Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal., 55 (2017), pp. 1291-1314. · Zbl 1457.65202
[28] Lee, S., Lee, Y.-J., and Wheeler, M. F., A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems, SIAM J. Sci. Comput., 38 (2016), pp. A1404-A1429. · Zbl 1337.65128
[29] Linke, A., A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), pp. 837-840. · Zbl 1303.76106
[30] Linke, A., On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), pp. 782-800. · Zbl 1295.76007
[31] Lions, J. L. and Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972. · Zbl 0227.35001
[32] Lipnikov, K., Vassilev, D., and Yotov, I., Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids, Numer. Math., 193 (2014), pp. 321-360. · Zbl 1282.76139
[33] Mardal, K. A., Tai, X.-C., and Winther, R., A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40 (2002), pp. 1605-1631. · Zbl 1037.65120
[34] Mu, L., Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J. Sci. Comput., 42 (2020), pp. B608-B629. · Zbl 1440.65224
[35] Persson, P.-O. and Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), pp. 329-345. · Zbl 1061.65134
[36] Raviart, P. A. and Thomas, J. M., A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer-Verlag, Berlin1977. · Zbl 0362.65089
[37] Rivière, B. and Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), pp. 1959-1977. · Zbl 1084.35063
[38] Rui, H. and Zhang, J., A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport, Comput. Methods Appl. Mech. Engrg., 315 (2017), pp. 169-189. · Zbl 1439.76091
[39] Sun, S. and Wheeler, M. F., Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. Numer. Math., 52 (2005), pp. 273-298. · Zbl 1079.76584
[40] Vassilev, D. and Yotov, I., Coupling Stokes-Darcy flow with transport, SIAM J. Sci. Comput., 31 (2009), pp. 3661-3684. · Zbl 1391.76757
[41] Wang, G., Mu, L., Wang, Y., and He, Y., A pressure-robust virtual element method for the Stokes problem, Comput. Methods Appl. Mech. Engrg., 382 (2021), 113879. · Zbl 1506.76102
[42] Zhang, J., Rui, H., and Cao, Y., A partitioned method with different time steps for coupled Stokes and Darcy flows with transport, Int. J. Numer. Anal. Model., 16 (2018), pp. 463-498. · Zbl 1427.65215
[43] Zhao, L., Chung, E., and Lam, M., A new staggered DG method for the Brinkman problem robust in the Darcy and Stokes limits, Comput. Methods Appl. Mech. Engrg., 364 (2020). · Zbl 1442.76076
[44] Zhao, L. and Park, E.-J., A staggered discontinuous Galerkin method of minimal dimension on quadrilateral and polygonal meshes, SIAM J. Sci. Comput., 40 (2018), pp. A2543-A2567. · Zbl 1397.65300
[45] Zhao, L. and Park, E.-J., A lowest-order staggered DG method for the coupled Stokes-Darcy problem, IMA J. Numer. Anal., 40 (2020), pp. 2871-2897. · Zbl 1466.65209
[46] Zhao, L. and Park, E.-J., A new hybrid staggered discontinuous Galerkin method on general meshes, J. Sci. Comput., 82 (2020), doi:10.1007/s10915-019-01119-6. · Zbl 1448.65252
[47] Zhao, L., Park, E.-J., and Shin, D.-w., A staggered DG method of minimal dimension for the Stokes equations on general meshes, Comput. Methods Appl. Mech. Engrg., 345 (2019), pp. 854-875. · Zbl 1440.76092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.