×

A LWR model with constraints at moving interfaces. (English) Zbl 1492.35164

Summary: We propose a mathematical framework to the study of scalar conservation laws with moving interfaces. This framework is developed on a LWR model with constraint on the flux along these moving interfaces. Existence is proved by means of a finite volume scheme. The originality lies in the local modification of the mesh and in the treatment of the crossing points of the trajectories.

MSC:

35L65 Hyperbolic conservation laws
35L03 Initial value problems for first-order hyperbolic equations
76A30 Traffic and pedestrian flow models
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

References:

[1] B. Andreianov, New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM: Proc. Surv. 50 (2015) 40-65. · Zbl 1342.35174 · doi:10.1051/proc/201550003
[2] B. Andreianov and D. Mitrović, Entropy conditions for scalar conservation laws with discontinuous flux revisited. Ann. Inst. Henri Poincaré Anal. Non Linéaire 32 (2015) 1307-1335. · Zbl 1343.35158 · doi:10.1016/j.anihpc.2014.08.002
[3] B. Andreianov and A. Sylla, A macroscopic model to reproduce self-organization at bottlenecks. In: International Conference on Finite Volumes for Complex Applications. Springer (2020) 243-254. · Zbl 1454.65067
[4] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math. 115 (2010) 609-645. · Zbl 1196.65151
[5] B. Andreianov, K. Karlsen and N.H. Risebro, A theory of L^1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27-86. · Zbl 1261.35088 · doi:10.1007/s00205-010-0389-4
[6] A. Bressan, G. Guerra and W. Shen, Vanishing viscosity solutions for conservation laws with regulated flux. J. Differ. Equ. 266 (2019) 312-351. · Zbl 1421.35212 · doi:10.1016/j.jde.2018.07.044
[7] C. Cancès and T. Gallouët, On the time continuity of entropy solutions. J. Evol. Equ. 11 (2011) 43-55. · Zbl 1232.35029 · doi:10.1007/s00028-010-0080-0
[8] C. Chalons, M.L. Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem. Interfaces Free Boundaries 19 (2018) 553-570. · Zbl 1404.65110 · doi:10.4171/IFB/392
[9] R.M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234 (2007) 654-675. · Zbl 1253.65122 · doi:10.1016/j.jde.2006.10.014
[10] R.M. Colombo, M. Mercier and M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37-65. · Zbl 1183.35197 · doi:10.4310/CMS.2009.v7.n1.a2
[11] M.L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: An existence result. J. Differ. Equ. 257 (2014) 4015-4029. · Zbl 1302.35248 · doi:10.1016/j.jde.2014.07.014
[12] M.L. Delle Monache and P. Goatin, A numerical scheme for moving bottlenecks in traffic flow. Bull. Braz. Math. Soc., New Ser. 47 (2016) 605-617. · Zbl 1358.90025 · doi:10.1007/s00574-016-0172-8
[13] M.L. Delle Monache and P. Goatin, Stability estimates for scalar conservation laws with moving flux constraints. Netw. Heterogen. Media 12 (2017) 245-258. · Zbl 1432.35140 · doi:10.3934/nhm.2017010
[14] M.L. Delle Monache, T. Liard, B. Piccoli, R. Stern and D. Work, Traffic reconstruction using autonomous vehicles. SIAM J. Appl. Math. 79 (2019) 1748-1767. · Zbl 1442.35253 · doi:10.1137/18M1217000
[15] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods. Vol . In: Handbook of Numerical Analysis. Vol. VII, North-Holland, Amsterdam (2000). · Zbl 0981.65095
[16] A. Ferrara, P. Goatin and G. Piacentini, A macroscopic model for platooning in highway traffic. SIAM J. Appl. Math. 80 (2020) 639-656. · Zbl 1439.35326 · doi:10.1137/19M1292424
[17] M. Garavello, P. Goatin, T. Liard and B. Piccoli, A multiscale model for traffic regulation via autonomous vehicles. J. Differ. Equ. 269 (2020) 6088-6124. · Zbl 1439.90025 · doi:10.1016/j.jde.2020.04.031
[18] I. Gasser, C. Lattanzio and A. Maurizi, Vehicular traffic flow dynamics on a bus route. Multiscale Model. Simul. 11 (2013) 925-942. · Zbl 1282.35238 · doi:10.1137/130906350
[19] H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. In: Applied Mathematical Sciences. Vol. 152, Springer-Verlag, New York (2002). · Zbl 1006.35002 · doi:10.1007/978-3-642-56139-9
[20] K.H. Karlsen and J.D. Towers, Convergence of the lax-friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. 25 (2004) 287-318. · Zbl 1112.65085 · doi:10.1142/S0252959904000299
[21] S.N. Kruzhkov, First order quasilinear equations with several independent variables. Math. USSR-Sbornik 81 (1970) 228-255. · Zbl 0202.11203
[22] N. Laurent-Brouty, G. Costeseque and P. Goatin, A macroscopic traffic flow model accounting for bounded acceleration. SIAM J. Appl. Math. 81 (2021) 173-189. · Zbl 1461.35152 · doi:10.1137/19M1268173
[23] A. Sylla, Heterogeneity in scalar conservation laws: Approximation and applications, Ph.D. thesis, University of Tours (2021).
[24] A. Sylla, Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Netw. Heterogen. Media 16 (2021) 221-256. · Zbl 1469.35146 · doi:10.3934/nhm.2021005
[25] J.D. Towers, Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities. Numer. Math. 139 (2018) 939-969. · Zbl 1395.65042 · doi:10.1007/s00211-018-0957-3
[26] J.D. Towers, An existence result for conservation laws having BV spatial flux heterogeneities-without concavity. J. Differ. Equ. 269 (2020) 5754-5764. · Zbl 1440.35213 · doi:10.1016/j.jde.2020.04.016
[27] A.I. Vol’pert, The spaces BV and quasilinear equations. Mat. Sb. 115 (1967) 255-302.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.