×

Sharp asymptotics for Einstein-\({\lambda}\)-dust flows. (English) Zbl 1360.83008

Summary: We consider the Einstein-dust equations with positive cosmological constant \({\lambda}\) on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold \({S}\). It is shown that the set of standard Cauchy data for the Einstein-\({\lambda}\)-dust equations on \({S}\) contains an open (in terms of suitable Sobolev norms) subset of data which develop into solutions that admit at future time-like infinity a space-like conformal boundary \({{\mathcal J}^+}\) that is \({C^{\infty}}\) if the data are of class \({C^{\infty}}\) and of correspondingly lower smoothness otherwise. The class of solutions considered here comprises non-linear perturbations of FLRW solutions as very special cases. It can conveniently be characterized in terms of asymptotic end data induced on \({{\mathcal J}^+}\). These data must only satisfy a linear differential equation. If the energy density is everywhere positive they can be constructed without solving differential equations at all.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
53Z05 Applications of differential geometry to physics
57M50 General geometric structures on low-dimensional manifolds
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C40 Gravitational energy and conservation laws; groups of motions
83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory

References:

[1] Bartnik, R., Isenberg, J.: The constraint equations. In: Chruściel, P.T., Friedrich, H. (Eds.) The Einstein equations and the large scale behaviour of gravitational fields. Birkhäuser, Basel (2004) · Zbl 1073.83009
[2] Beyer F.: Investigations of solutions of Einstein’s field equations close to lambda-Taub-NUT. Class. Quantum Gravity 25, 235005 (2008) · Zbl 1155.83316 · doi:10.1088/0264-9381/25/23/235005
[3] Friedrich H.: On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100, 525-543 (1985) · Zbl 0588.35058 · doi:10.1007/BF01217728
[4] Friedrich H.: Existence and structure of past asymptotically simple solution of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3, 101-117 (1986) · Zbl 0592.53061 · doi:10.1016/0393-0440(86)90004-5
[5] Friedrich H.: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587-609 (1986) · Zbl 0659.53056 · doi:10.1007/BF01205488
[6] Friedrich H.: On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Differ. Geometry 34, 275-345 (1991) · Zbl 0737.53070
[7] Friedrich H.: Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys. 17, 125-184 (1995) · Zbl 0840.53055 · doi:10.1016/0393-0440(94)00042-3
[8] Friedrich H.: Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D 57, 2317-2322 (1998) · doi:10.1103/PhysRevD.57.2317
[9] Friedrich H.: Conformal geodesics on vacuum space-times. Commun. Math. Phys. 235, 513-543 (2003) · Zbl 1040.53079 · doi:10.1007/s00220-003-0794-8
[10] Friedrich H.: Smooth non-zero rest-mass evolution across time-like infinity. Ann. Henri Poincaré 16, 2215-2238 (2015) · Zbl 1326.83086 · doi:10.1007/s00023-014-0368-7
[11] Friedrich, H.: Geometric asymptotics and beyond. In: Bieri, L., Yau, S.T. (Eds.) Surveys in differential geometry, vol.20. International Press, Boston (2015). arXiv:1411.3854 · Zbl 1339.83007
[12] Friedrich, H., Rendall, A.: The Cauchy Problem for the Einstein Equations. In: Schmidt, B. (Ed.) Einstein’s field equations and their physical implications. Springer, Lecture Notes in Physics, Berlin (2000) · Zbl 1006.83003
[13] Hadžić M., Speck J.: The global future stability of the FLRW solutions to the Dust-Einstein system with a positive cosmological constant. J. Hyperb. Differ. Equations 12, 87 (2015) · Zbl 1333.35281 · doi:10.1142/S0219891615500046
[14] Hawking S., Ellis G.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[15] Kato T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181-205 (1975) · Zbl 0343.35056 · doi:10.1007/BF00280740
[16] Lübbe C., Valiente Kroon J.A.: A conformal approach to the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1 (2013) · Zbl 1263.83188 · doi:10.1016/j.aop.2012.10.011
[17] Penrose R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. Lond. A 284, 159-203 (1965) · Zbl 0129.41202 · doi:10.1098/rspa.1965.0058
[18] Penrose R.: Cycles of time. Vintage, London (2011) · Zbl 1231.00017
[19] Reula O.: Exponential decay for small non-linear perturbations of expanding flat homogeneous cosmologies. Phys. Rev. D 60, 083507 (1999) · doi:10.1103/PhysRevD.60.083507
[20] Ringström H.: Future stability of the Einstein-non-linear scalar field system. Invent. math. 173, 123-208 (2008) · Zbl 1140.83314 · doi:10.1007/s00222-008-0117-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.