×

Hamiltonian reductions for modeling relativistic laser-plasma interactions. (English) Zbl 1254.82039

Authors’ abstract: We show two applications of Hamiltonian reductions related to relativistic laser-plasma interactions starting from the Vlasov-Maxwell equation. The use of the Hamiltonian formalism ensures a consistent asymptotic ordering and results in reduced models that maximally preserve the structure of Vlasov-Maxwell system.

MSC:

82D10 Statistical mechanics of plasmas
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
83C50 Electromagnetic fields in general relativity and gravitational theory
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI

References:

[1] Krall, N. A.; Trivelpiece, A. W., Principles of plasma physics (1973), McGraw-Hill: McGraw-Hill New York
[2] Shoucri, M.; Knorr, G., Numerical integration of the Vlasov equation, J Comput Phys, 14, 84-92 (1974) · Zbl 0275.65029
[3] Cheng, C.; Knorr, G., The integration of the Vlasov equation in configuration space, J Comput Phys, 22, 330-351 (1976)
[4] Shoucri, M., Eulerian codes for the numerical solution of the Vlasov equation, Commun Nonlinear Sci Numer Simul, 13, 174-182 (2008) · Zbl 1130.35370
[5] Shadwick, B. A.; Tarkenton, G. M.; Esarey, E.; Schroeder, C. B., Fluid and Vlasov models of low-temperature, collisionless, relativistic plasma interactions, Phys Plasmas, 12, 056710 (2005)
[6] Banks, J.; Hittinger, J., A new class of nonlinear finite-volume methods for Vlasov simulation, IEEE Trans Plasma Sci, 38, 2198-2207 (2010)
[7] Birdsall, C. K.; Langdon, A. B., Plasma physics via computer simulations. Plasma physics via computer simulations, Plasma physics series (1991), Institute of Physics Publishing.: Institute of Physics Publishing. Bristol
[8] Hockney, R. W.; Eastwood, J. W., Computer simulation using particles (1988), Taylor & Francis Group: Taylor & Francis Group New York · Zbl 0662.76002
[9] Cormier-Michel, E.; Shadwick, B. A.; Geddes, C. G.R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P., Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators, Phys Rev E, 78, 016404 (2008)
[10] Morrison, P. J., The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys Lett, 80A, 383-386 (1980)
[11] Morrison PJ. Poisson brackets for fluids and plasmas. In: AIP Conference Proceedings, vol. 88, 1982. p. 13-46.; Morrison PJ. Poisson brackets for fluids and plasmas. In: AIP Conference Proceedings, vol. 88, 1982. p. 13-46. · Zbl 0588.76004
[12] Weinstein, A.; Morrison, P. J., Comments on: the Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys Lett, 80A, 235-236 (1981)
[13] Morrison, P. J., Hamiltonian description of the ideal fluid, Rev Mod Phys, 70, 467-521 (1998) · Zbl 1205.37093
[14] de Groot, S. R.; van Leeuwen, W. A.; van Weert, Ch. G., Relativistic kinetic theory: principles and applications (1980), North-Holland: North-Holland New York
[15] Mihalas, D.; Weibel-Mihalas, B., Foundations of radiation hydrodynamics (1984), Dover: Dover Mineola, New York · Zbl 0651.76005
[16] Mahajan, S. M., Temperature-transformed “minimal coupling”: magnetofluid unification, Phys Rev Lett, 90, 035001 (2003)
[17] Hazeltine, R. D.; Mahajan, S. M., Fluid description of relativistic, magnetized plasma, Astrophys J, 567, 1262-1271 (2002)
[18] Mahajan, S. M.; Hazeltine, R. D., Fluid description of a magnetized plasma, Phys Plasmas, 9, 1882-1889 (2002)
[19] Shadwick, B. A.; Tarkenton, G. M.; Esarey, E. H., Hamiltonian description of low-temperature relativistic plasmas, Phys Rev Lett, 93, 175002 (2004)
[20] Shadwick BA, Tarkenton GM, Esarey EH. Thermal effects in intense laser-plasma interactions, In: AIP Conference Proceedings, vol. 737, 2004. p. 449-455.; Shadwick BA, Tarkenton GM, Esarey EH. Thermal effects in intense laser-plasma interactions, In: AIP Conference Proceedings, vol. 737, 2004. p. 449-455.
[21] Volfbeyn, P.; Esarey, E.; Leemans, W. P., Guiding of laser pulses in plasma channels created by the ignitor-heater technique, Phys Plasmas, 6, 2269-2277 (1999)
[22] Marconi, M. C.; Moreno, C. H.; Rocca, J. J.; Shlyaptsev, V. N.; Osterheld, A. L., Dynamics of a microcapillary discharge plasma using a soft x-ray laser backlighter, Phys Rev E, 62, 7209-7218 (2000)
[23] Geddes, C.; Esarey, E.; Faure, J.; Leemans, W.; Toth, C.; Tilborg, J. V., Laser guiding at >\(10^{18}\) w/\(cm^2\) in cm-scale gas jest using the ignitor-heater method, Bull Am Phys Soc, 48, 131 (2003)
[24] Esarey, E.; Schroeder, C. B.; Leemans, W. P., Physics of laser-driven plasma-based electron accelerators, Rev Mod Phys, 81, 1229-1285 (2009)
[25] Shadwick BA, Lee F, Tassi MM, Tarkenton GM. Self-consistent Hamiltonian model of beam transport in a laser-driven plasma accelerator. In: AIP Conference Proceedings, vol. 1299, 2010. p. 221-226.; Shadwick BA, Lee F, Tassi MM, Tarkenton GM. Self-consistent Hamiltonian model of beam transport in a laser-driven plasma accelerator. In: AIP Conference Proceedings, vol. 1299, 2010. p. 221-226.
[26] Shadwick BA, Wurtele JS. General moment model of beam transport. In: Particle Accelerator Conference, 1999. Proceedings of the 1999, vol. 4. p. 2888-2890.; Shadwick BA, Wurtele JS. General moment model of beam transport. In: Particle Accelerator Conference, 1999. Proceedings of the 1999, vol. 4. p. 2888-2890.
[27] Chiou, T. C.; Katsouleas, T., High beam quality and efficiency in plasma-based accelerators, Phys Rev Lett, 81, 3411-3414 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.