×

Generalized multiscale approximation of mixed finite elements with velocity elimination for subsurface flow. (English) Zbl 1453.76065

Summary: A frame work of the mixed generalized multiscale finite element method (GMsFEM) for solving Darcy’s law in heterogeneous media is studied in this paper. Our approach approximates pressure in multiscale function space that is between fine-grid space and coarse-grid space and solves velocity directly in the fine-grid space. To construct multiscale basis functions for each coarse-grid element, three types of snapshot space are raised. The first one is taken as the fine-grid space for pressure and the other two cases need to solve a local problem on each coarse-grid element. We describe a spectral decomposition in the snapshot space motivated by the analysis to further reduce the dimension of the space that is used to approximate the pressure. Since the velocity is directly solved in the fine-grid space, in the linear system for the mixed finite elements, the velocity matrix can be approximated by a diagonal matrix without losing any accuracy. Thus it can be inverted easily. This reduces computational cost greatly and makes our scheme simple and easy for application. Comparing to our previous work of mixed generalized multiscale finite element method [the second author et al., Multiscale Model. Simul. 13, No. 1, 338–366 (2015; Zbl 1317.65204)], both the pressure and velocity space in this approach are bigger. As a consequence, this method enjoys better accuracy. While the computational cost does not increase because of the good property of velocity matrix. Moreover, the proposed method preserves the local mass conservation property that is important for subsurface problems. Numerical examples are presented to illustrate the good properties of the proposed approach. If offline spaces are appropriately selected, one can achieve good accuracy with only a few basis functions per coarse element according to the numerical results.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76T06 Liquid-liquid two component flows

Citations:

Zbl 1317.65204

References:

[1] Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, SIAM J. Multiscale Model. Simul., 2, 421-439 (2004) · Zbl 1181.76125
[2] Aarnes, J. E.; Efendiev, Y.; Jiang, L., Analysis of multiscale finite element methods using global information for two-phase flow simulations, SIAM J. Multiscale Model. Simul., 7, 2177-2193 (2008)
[3] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform grids, SIAM J. Multiscale Model. Simul., 5, 2, 337-363 (2006) · Zbl 1124.76022
[4] Arbogast, T.; Pencheva, G.; Wheeler, M. F.; Yotov, I., A multiscale mortar mixed finite element method, SIAM J. Multiscale Model. Simul., 6, 1, 319-346 (2007) · Zbl 1322.76039
[5] Arbogast, Todd; Wheeler, Mary F.; Yotov, Ivan, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., 34, 2, 828-852 (1997) · Zbl 0880.65084
[6] Barker, J. W.; Thibeau, S., A critical review of the use of pseudorelative permeabilities for upscaling, SPE Reserv. Eng., 12, 138-143 (1997)
[7] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[8] Bush, L.; Ginting, V., On the application of the continuous Galerkin finite element method for conservation problems, SIAM J. Sci. Comput., 35, 6, A2953-A2975 (2013) · Zbl 1286.65153
[9] Chan, H. Y.; Chung, E. T.; Efendiev, Y., Adaptive mixed GMsFEM for flows in heterogeneous media, Numer. Math., Theory Methods Appl., 9, 4, 497-527 (2016) · Zbl 1399.65322
[10] Chen, F.; Chung, E.; Jiang, L., Least-squares mixed generalized multiscale finite element method, Comput. Methods Appl. Mech. Eng., 311, 764-787 (2016) · Zbl 1433.76073
[11] Chen, Y.; Durlofsky, L.; Gerritsen, M.; Wen, X., A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations, Adv. Water Resour., 26, 1041-1060 (2003)
[12] Chen, Z.; Hou, T. Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 242, 541-576 (2003) · Zbl 1017.65088
[13] Chung, E.; Efendiev, Y.; Hou, T. Y., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, 69-95 (2016) · Zbl 1349.76191
[14] Chung, E. T.; Efendiev, Y.; Lee, C. S., Mixed generalized multiscale finite element methods and applications, Multiscale Model. Simul., 13, 1, 338-366 (2015) · Zbl 1317.65204
[15] Chung, E. T.; Fu, S.; Yang, Y., An enriched multiscale mortar space for high contrast flow problems (2016), arXiv preprint
[16] Chung, E. T.; Leung, W. T.; Vasilyeva, M., Mixed gmsfem for second order elliptic problem in perforated domains, J. Comput. Appl. Math., 304, 84-99 (2016) · Zbl 1382.65382
[17] Cortinovis, D.; Jenny, P., Iterative Galerkin-enriched multiscale finite-volume method, J. Comput. Phys., 277, 248-267 (2014) · Zbl 1349.65576
[18] Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27, 699-708 (1991)
[19] Durlofsky, L. J., Coarse scale models of two-phase flow in heterogeneous reservoirs: volume averaged equations and their relation to existing upscaling techniques, Comput. Geosci., 2, 73-92 (1998) · Zbl 0943.76085
[20] Efendiev, Y.; Galvis, J.; Hou, T., Generalized multiscale finite element methods, J. Comput. Phys., 251, 116-135 (2013) · Zbl 1349.65617
[21] Efendiev, Y.; Hou, T., Multiscale Finite Element Methods: Theory and Applications (2009), Springer · Zbl 1163.65080
[22] Efendiev, Y.; Hou, T.; Wu, X. H., Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37, 888-910 (2000) · Zbl 0951.65105
[23] Efendiev, Y.; Iliev, O.; Mini-workshop, P. S. Vassilevski, Numerical upscaling for media with deterministic and stochastic heterogeneity, Oberwolfach Rep., 10, 1, 393-431 (2013) · Zbl 1349.00152
[24] Hajibeygi, H.; Kavounis, D.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 4, 8729-8743 (2011) · Zbl 1370.76095
[25] Hou, T.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[26] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044
[27] Jenny, P.; Lee, S. H.; Tchelepi, H., Multi-scale finite volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) · Zbl 1047.76538
[28] Kou, J.; Sun, S.; Wang, X., Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow, SIAM J. Numer. Anal., 56, 6, 3219-3248 (2018) · Zbl 1404.65226
[29] K-A Lie; Møyner, O.; Natvig, J. R., A feature-enriched multiscale method for simulating complex geomodels, (SPE Reservoir Simulation Conference (2017), Society of Petroleum Engineers)
[30] Lunati, I.; Jenny, P., Multi-scale finite-volume method for highly heterogeneous porous media with shale layers, (Proceedings of the 9th European Conference on the Mathematics of Oil Recovery (ECMOR). Proceedings of the 9th European Conference on the Mathematics of Oil Recovery (ECMOR), Cannes, France (2004))
[31] Odsæter, L. H.; Wheeler, M. F.; Kvamsdal, T.; Larson, M. G., Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media, Comput. Methods Appl. Mech. Eng., 315, 799-830 (2017) · Zbl 1439.76158
[32] Peszyńska, M., Mortar adaptivity in mixed methods for flow in porous media, Int. J. Numer. Anal. Model., 2, 3, 241-282 (2005) · Zbl 1121.76037
[33] Peszyńska, M.; Wheeler, M.; Yotov, I., Mortar upscaling for multiphase flow in porous media, Comput. Geosci., 6, 1, 73-100 (2002) · Zbl 1056.76048
[34] Russell, Thomas F.; Wheeler, Mary Fanett, Finite element and finite difference methods for continuous flows in porous media, (The Mathematics of Reservoir Simulation (1983), SIAM), 35-106 · Zbl 0572.76089
[35] Sun, S., Darcy-scale phase equilibrium modeling with gravity and capillarity, J. Comput. Phys., 399, Article 108908 pp. (2019) · Zbl 1453.76207
[36] Sun, Shuyu; Wheeler, Mary F., Projections of velocity data for the compatibility with transport, Comput. Methods Appl. Mech. Eng., 195, 7-8, 653-673 (2006) · Zbl 1091.76041
[37] Wu, X. H.; Efendiev, Y.; Hou, T. Y., Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst., Ser. B, 2, 158-204 (2002) · Zbl 1162.65327
[38] Yang, H.; Sun, S.; Li, Y.; Yang, C., A fully implicit constraint-preserving simulator for the black oil model of petroleum reservoirs, J. Comput. Phys., 396, 347-363 (2019) · Zbl 1452.76138
[39] Zhu, G.; Kou, J.; Yao, B.; Wu, Y.; Yao, J.; Sun, S., Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants, J. Fluid Mech., 879, 25, 327-359 (2019) · Zbl 1430.76475
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.