×

Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression. (English) Zbl 1439.74177

Summary: As a first endeavor, the aeroelastic responses of functionally graded carbon nanotube reinforced composite (FG-CNTRC) truncated conical curved panels subjected to aerodynamic load and axial compression are investigated. The nonlinear dynamic equations of FG-CNTRC conical curved panels are derived according to Green’s strains and the Novozhilov nonlinear shell theory. The aerodynamic load is estimated in accordance with the quasi-steady Krumhaar’s modified supersonic piston theory by taking into account the effect of the panel curvature. Matrix transform method along with the harmonic differential quadrature method (HDQM) are employed to solve the nonlinear equations of motion of the FG-CNTRC truncated conical curved panel. The advantage of the matrix transform method is that we only need to discretize the meridional direction. Effects of semi-vertex angle of the cone, subtended angle of the panel, boundary conditions, geometrical parameters, volume fraction and distribution of CNT, and Mach number on the aeroelastic characteristics of the FG-CNTRC conical curved panel are put into evidence via a set of parametric studies and pertinent conclusions are outlined. The results prove that the panels with different FG distributions have different critical dynamic pressure. It is found that the semi-vertex and subtended angles play a pivotal role in changing the critical circumferential mode number of the flutter instability. Besides, the research shows that the superb efficiency of proposed method with few grid points, which requires less CPU time, are attributed to the matrix transform method and the higher-order harmonic approximation function in the HDQM.

MSC:

74K25 Shells
Full Text: DOI

References:

[1] Dowell, E. H.; Voss, H. M., Theoretical and experimental panel flutter studies in the Mach number range 1.0 to 5.05, AIAA J., 3, 2292-2304 (1965)
[2] Dowell, E. H., Panel flutter: a review of the aeroelastic stability of plates and shells, AIAA J., 8, 385-399 (1970)
[3] Bisplinghoff, R. L.; Ashley, H., Principles of Aeroelasticity (1962), Wiley: Wiley New York · Zbl 0114.19802
[4] Li, F. M.; Song, M. G., Aeroelastic flutter analysis for 2D Kirchhoff and Mindlin panels with different boundary conditions in supersonic airflow, Acta Mech., 225, 3339-3351 (2014) · Zbl 1326.74047
[5] Xue, D. Y.; Mei, C., Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow, AIAA J., 31, 154-162 (1993) · Zbl 0779.73075
[6] Amabili, M.; Pellicano, F., Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells, J. Appl. Mech., 69, 117-129 (2012) · Zbl 1110.74313
[7] Kouchakzadeh, M. A.; Rasekh, M.; Haddadpour, H., Panel flutter analysis of general laminated composite plates, Compos. Struct., 92, 2906-2915 (2010)
[8] Song, Z. G.; Li, F. M., Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams, Nonlinear Dynam., 76, 57-68 (2014) · Zbl 1319.74008
[9] Samadpour, M.; Asadi, H.; Wang, Q., Nonlinear aero-thermal flutter postponement of supersonic laminated composite beams with shape memory alloys, Eur. J. Mech.-A/Solids, 57, 18-28 (2016) · Zbl 1406.74407
[10] Liew, K. M.; Lei, Z. X.; Zhang, L. W., Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Compos. Struct., 120, 90-97 (2015)
[11] Wuite, J.; Adali, S., Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis, Compos. Struct., 71, 388-396 (2005)
[12] Rafiee, M.; Yang, J.; Kitipornchai, S., Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams, J. Comput. Math. Appl., 66, 1147-1160 (2013) · Zbl 1353.82091
[13] Yas, M. H.; Samadi, N., Free vibrations and buckling analysis of carbon nanotube reinforced composite Timoshenko beams on elastic foundation, Int. J. Press. Vessels Pip., 98, 119-128 (2012)
[14] Shen, H. S.; Xiang, Y., Nonlinear analysis of nanotube reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., 56, 698-708 (2013)
[15] Formica, G.; Lacarbonara, W.; Alessi, R., Vibrations of carbon nanotube-reinforced composites, J. Sound Vib., 329, 1875-1889 (2010)
[16] Asadi, H.; Wang, Q., An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow, Composites Part B (2016), (in press)
[17] Arani, A.; Maghamikia, S.; Mohammadimehr, M.; Arefmanesh, A., Buckling analysis of laminated composite rectangular plates reinforced by SWNTs using analytical and finite element methods, Mech. Sci. Technol., 25, 809-820 (2011)
[18] Lei, Z. X.; Liew, K. M.; Yu, J. I., Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Compos. Struct., 98, 160-168 (2013)
[19] Lei, Z. X.; Liew, K. M.; Yu, J. I., Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Comput. Methods Appl. Mech. Eng., 256, 189-199 (2013) · Zbl 1352.74165
[20] Rafiee, M.; He, X. Q.; Liew, K. M., Nonlinear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection, Int. J. Nonlinear Mech., 59, 37-51 (2014)
[21] Zhang, L. W.; Lei, Z. X.; Liew, K. M., An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations, Eng. Anal. Bound. Elem., 58, 7-17 (2015) · Zbl 1403.74136
[22] Lei, Z. X.; Zhang, L. W.; Liew, K. M., Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach, Appl. Math. Comput., 266, 773-791 (2015) · Zbl 1410.74039
[23] Zhang, L. W.; Lei, Z. X.; Liew, K. M., Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach, Composites B., 75, 36-46 (2015) · Zbl 1410.74039
[24] Zhang, L. W.; Lei, Z. X.; Liew, K. M., Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates, Compos. Struct., 122, 172-183 (2015)
[25] Zhang, L. W.; Lei, Z. X.; Liew, K. M., Free vibration analysis of functionally graded carbon nanotube reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method, Compos. Struct., 120, 189-199 (2015)
[26] Mohammadzadeh- Keleshteri, M.; Asadi, H.; Aghdam, M. M., Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers, Compos. Struct. (2017), In Press. http://dx.doi.org/10.1016/j.compstruct.2017.01.048
[27] Asadi, H.; Souri, M.; Wang, Q., A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments, Compos. Struct. (2017), In Press. http://dx.doi.org/10.1016/j.compstruct.2017.02.003
[28] Liew, K. M.; Lei, Z. X.; Yu, J. L.; Zhang, L. W., Postbuckling analysis of carbon nanotube reinforced functionally graded cylindrical panels under axial compression using a meshless, Comput. Methods Appl. Mech. Eng., 268, 1-17 (2014) · Zbl 1295.74062
[29] Lei, Z. X.; Zhang, L. W.; Liew, K. M.; Yu, J. L., Dynamic stability analysis of carbon nanotube reinforced functionally graded cylindrical panels under axial compression using the element-free kp-Ritz method, Compos. Struct., 113, 328-338 (2014)
[30] Mehri, M.; Asadi, H.; Wang, Q., On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow, Compos. Struct., 153, 938-951 (2016)
[31] Shen, H. S.; Xiang, Y., Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Composites B., 67, 50-61 (2014)
[32] Shen, H. S.; Xiang, Y., Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Compos. Struct., 123, 383-392 (2015)
[33] Shen, H. S.; Xiang, Y., Nonlinear response of nanotube-reinforced composite cylindrical panels subjected to combined loadings and resting on elastic foundations, Compos. Struct., 131, 939-950 (2015)
[34] Shen, H. S., Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells, Composites B., 43, 1030-1038 (2012)
[35] Shen, H. S., Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Compos. Struct., 116, 477-488 (2014)
[36] Heydarpour, Y.; Aghdam, M. M.; Malekzadeh, P., Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Compos. Struct., 117, 187-200 (2014) · Zbl 1383.74034
[37] Zhang, L. W.; Lei, Z. X.; Liew, K. M.; Yu, J. L., Large deflection geometrically nonlinear analysis of carbon nanotube reinforced functionally graded cylindrical panels, Comput. Methods Appl. Mech. Eng., 273, 1-18 (2014) · Zbl 1296.76116
[38] Zhang, L. W.; Lei, Z. X.; Liew, K. M.; Yu, J. L., Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels, Compos. Struct., 111, 205-212 (2014)
[39] Mehri, M.; Asadi, H.; Wang, Q., Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method, Comput. Methods Appl. Mech. Eng., 303, 75-100 (2016) · Zbl 1425.74195
[40] Ansari, R.; Torabi, J., Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading, Composites B., 95, 196-208 (2016)
[41] Zhang, L. W.; Song, Z. G.; Liew, K. M., Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow, Comput. Methods Appl. Mech. Eng., 300, 427-441 (2016) · Zbl 1425.74168
[42] Zhou, X.; Shin, E.; Wang, K. W.; Bakis, C. E., Interfacial damping characteristics of carbon nanotube-based composites, Compos. Sci. Technol., 64, 15, 2425-2437 (2004)
[43] Krumhaar, H., The accuracy of linear piston theory when applied to cylindrical shells, AIAA, 1, 6, 1448-1449 (1963)
[44] S.C. Dixon, M.L. Hudson, Flutter, vibration, and buckling of truncated orthotropic conical shells with generalized elastic edge restraint. NASA, TN D-5759, 1970.; S.C. Dixon, M.L. Hudson, Flutter, vibration, and buckling of truncated orthotropic conical shells with generalized elastic edge restraint. NASA, TN D-5759, 1970.
[45] Bellman, R. E.; Kashef, B. G.; Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 40-52 (1972) · Zbl 0247.65061
[46] Bellman, R. E.; Casti, J., Differential quadrature and long-term integration, J. Math. Anal. Appl., 34, 235-238 (1971) · Zbl 0236.65020
[47] Asadi, H.; Akbarzadeh, A. H.; Chen, Z. T.; Aghdam, M. M., Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys, Smart Mater. Struct., 24, Article 045022 pp. (2015)
[48] Asadi, H.; Aghdam, M. M.; Shakeri, M., Vibration analysis of axially moving line supported functionally graded plates with temperature-dependent properties, Proc. Inst. Mech. Eng, Part C: J. Mech. Eng. Sci., 228, 6, 953-969 (2014)
[49] Asadi, H.; Kiani, Y.; Shakeri, M.; Aghdam, M. M., Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy, J. Compos. Mater., 50, 2, 243-256 (2016)
[50] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates (2008), Cambridge University Press · Zbl 1154.74002
[51] Abediokhchi, J.; Kouchakzadeh, M. A.; Shakouri, M., Buckling analysis of cross-ply laminated conical panels using GDQ method, Composites Part B, 55, 440-446 (2013)
[52] Brush, D. O., Prebuckling rotations and cylindrical shell analysis, ASCE J. Eng. Mech., 106, 225-232 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.