×

Couple stress-based nonlinear primary resonant dynamics of FGM composite truncated conical microshells integrated with magnetostrictive layers. (English) Zbl 1476.83020

Summary: The size-dependent geometrically nonlinear harmonically soft excited oscillation of composite truncated conical microshells (CTCMs) made of functionally graded materials (FGMs) integrated with magnetostrictive layers is analyzed. It is supposed that the FGM CTCMs are subjected to mechanical soft excitations together with external magnetic fields. An analytical framework is created by a microstructure-dependent shell model having the 3rd-order distribution of shear deformation based on the modified couple stress (MCS) continuum elasticity. With the aid of the discretized form of differential operators developed via the generalized differential quadrature technique, a numerical solution methodology is introduced for obtaining the couple stress-based amplitude and frequency responses related to the primary resonant dynamics of the FGM CTCMs. Jump phenomena due to the loss of the first stability branch and falling down to the lower stable branch can be seen in the nonlinear primary resonance of the FGM CTCMs. It is demonstrated that the hardening type of nonlinearity results in bending the frequency response to the right side, and the MCS type of size effect weakens this pattern. Moreover, for higher material gradient indexes, the hardening type of nonlinearity is enhanced, and the MCS-based frequency response bends more considerably to the right side.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
74D05 Linear constitutive equations for materials with memory
74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Zhang, L. L.; Zhu, D.; He, H. X.; Wang, Q.; Xing, L. L.; Xue, X. Y., Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect, Journal of Physics and Chemistry of Solids, 102, 27-33 (2017) · doi:10.1016/j.jpcs.2016.11.009
[2] Chattaraj, N.; Ganguli, R., Effect of self-induced electric displacement field on the response of a piezo-bimorph actuator at high electric field, International Journal of Mechanical Sciences, 120, 341-348 (2017) · doi:10.1016/j.ijmecsci.2016.11.012
[3] He, H. X.; Dong, C. Y.; Fu, Y. M.; Han, W. X.; Zhao, T. M.; Xing, L. L.; Xue, X. Y., Self-powered smelling electronic-skin based on the piezo-gas-sensor matrix for real-time monitoring the mining environment, Sensors and Actuators B: Chemical, 267, 392-402 (2018) · doi:10.1016/j.snb.2018.04.046
[4] Chatzigeorgiou, G.; Benaarbia, A.; Meraghni, F., Piezoelectric-piezomagnetic behaviour of coated long fiber composites accounting for eigenfields, Mechanics of Materials, 138, 103157 (2019) · doi:10.1016/j.mechmat.2019.103157
[5] Chakraborty, S.; Mandal, S. K., Magnetoelectric Zn_0.2Co_0.8Fe_2O_4-PbZr_0.58Ti_0.42O_3 nanocomposite for bistable memory and magnetic field sensor applications, Journal of Magnetism and Magnetic Materials, 491, 165573 (2019) · doi:10.1016/j.jmmm.2019.165573
[6] Ghanati, P.; Safaei, B., Elastic buckling analysis of polygonal thin sheets under compression, Indian Journal of Physics, 93, 47-52 (2019) · doi:10.1007/s12648-018-1254-9
[7] Ghone, D. M.; Premkumar, S.; Patankar, K. K.; Kaushik, S. D.; Mathe, V. L., Enhanced strain derivative of Ho substituted cobalt ferrite and improved magnetoelectric coupling in co-sintered bi-layered ME composites, Sensors and Actuators A: Physical, 301, 111716 (2020) · doi:10.1016/j.sna.2019.111716
[8] Yuan, Y.; Zhao, K.; Sahmani, S.; Safaei, B., Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes, Applied Mathematics and Mechanics, 41, 4, 587-604 (2020) · Zbl 1457.74158 · doi:10.1007/s10483-020-2600-6
[9] Lin, S. M.; Tsai, C. L.; Lee, H. C., Effects of size dependency and axial deformation on the dynamic behavior of an AFM subjected to van der Waals force based on the modified couple stress theory, Precision Engineering, 56, 203-210 (2019) · doi:10.1016/j.precisioneng.2018.12.001
[10] Tan, Z. Q.; Chen, Y. C., Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by Joule heating using the modified couple stress theory, Composites Part B: Engineering, 161, 183-189 (2019) · doi:10.1016/j.compositesb.2018.10.067
[11] Thanh, C. L.; Tran, L. V.; Vu-Huu, T.; Abdel-Wahab, M., The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 350, 337-361 (2019) · Zbl 1441.74082 · doi:10.1016/j.cma.2019.02.028
[12] Mollamahmutoglu, C.; Mercan, A., A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory, Composite Structures, 223, 110950 (2019) · doi:10.1016/j.compstruct.2019.110950
[13] Sladek, V.; Sladek, J.; Repka, M.; Sator, L., FGM micro/nano-plates within modified couple stress elasticity, Composite Structures, 245, 112294 (2020) · doi:10.1016/j.compstruct.2020.112294
[14] Yuan, Y.; Zhao, K.; Zhao, Y. F.; Sahmani, S.; Safaei, B., Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells, Mechanics of Materials, 148, 103507 (2020) · doi:10.1016/j.mechmat.2020.103507
[15] Yuan, Y.; Zhao, K.; Han, Y. X.; Sahmani, S.; Safaei, B., Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model, Thin-Walled Structures, 154, 106857 (2020) · doi:10.1016/j.tws.2020.106857
[16] Khabaz, M. K.; Eftekhari, S. A.; Hashemian, M.; Toghraie, D., Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories, Physica A: Statistical Mechanics and its Applications, 546, 123998 (2020) · Zbl 07530132 · doi:10.1016/j.physa.2019.123998
[17] Trinh, L. C.; Groh, R. M J.; Zucco, G.; Weaver, P. M., A strain-displacement mixed formulation based on the modified couple stress theory for the flexural behaviour of laminated beams, Composites Part B: Engineering, 185, 107740 (2020) · doi:10.1016/j.compositesb.2019.107740
[18] Ma, Y. L.; Gao, Y. H.; Yang, W. L.; He, D., Free vibration of a micro-scale composite laminated Reddy plate using a finite element method based on the new modified couple stress theory, Results in Physics, 16, 102903 (2020) · doi:10.1016/j.rinp.2019.102903
[19] Shafiei, Z.; Sarrami-Foroushani, S.; Azhari, F.; Azhari, M., Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets, Aerospace Science and Technology, 98, 105652 (2020) · doi:10.1016/j.ast.2019.105652
[20] Thai, C. H.; Ferreira, A. J M.; Tran, T. D.; Phung-Van, P., A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory, Composite Structures, 234, 111695 (2020) · doi:10.1016/j.compstruct.2019.111695
[21] Fan, F.; Xu, Y. B.; Sahmani, S.; Safaei, B., Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach, Computer Methods in Applied Mechanics and Engineering, 372, 113400 (2020) · Zbl 1506.74181 · doi:10.1016/j.cma.2020.113400
[22] Tsaitas, G. C., A new Kirchhoff plate model based on a modified couple stress theory, International Journal of Solids and Structures, 46, 2757-2764 (2009) · Zbl 1167.74489 · doi:10.1016/j.ijsolstr.2009.03.004
[23] Karami, B.; Shahsavari, D.; Janghorban, M.; Li, L., Influence of homogenization schemes on vibration of functionally graded curved microbeams, Composite Structures, 216, 67-79 (2019) · doi:10.1016/j.compstruct.2019.02.089
[24] Faghih Shojaei, M.; Ansari, R.; Mohammadi, V.; Rouhi, H., Nonlinear forced vibration analysis of postbuckled beams, Archive of Applied Mechanics, 84, 421-440 (2014) · Zbl 1367.74019 · doi:10.1007/s00419-013-0809-7
[25] Ansari, R.; Mohammadi, V.; Faghih Shojaei, M.; Gholami, R.; Sahmani, S., On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory, Composites Part B: Engineering, 60, 158-166 (2014) · Zbl 1406.74279 · doi:10.1016/j.compositesb.2013.12.066
[26] Sahmani, S.; Bahrami, M.; Ansari, R., Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory, Composite Structures, 110, 219-230 (2014) · doi:10.1016/j.compstruct.2013.12.004
[27] Sahmani, S.; Bahrami, M.; Aghdam, M. M.; Ansari, R., Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Composite Structures, 118, 149-158 (2014) · doi:10.1016/j.compstruct.2014.07.026
[28] Sahmani, S.; Aghdam, M. M.; Bahrami, M., On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects, Composite Structures, 121, 377-385 (2015) · doi:10.1016/j.compstruct.2014.11.033
[29] Sahmani, S.; Aghdam, M. M., Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency, Results in Physics, 8, 879-892 (2018) · doi:10.1016/j.rinp.2018.01.002
[30] Keller, B. H., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory (1977), Madison, New York: University of Wisconsin, Madison, New York · Zbl 0581.65043
[31] Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S., Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica, 30, 516-525 (2014) · Zbl 1346.74083 · doi:10.1007/s10409-014-0072-3
[32] Li, F. M.; Kishimoto, K.; Huang, W. H., The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method, Mechanics Research Communications, 36, 595-602 (2009) · Zbl 1258.74106 · doi:10.1016/j.mechrescom.2009.02.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.