×

The influence of variable shell thickness on the vibrational behavior of composite sandwich conical shells with geodesic lattice cores. (English) Zbl 1535.74526

Summary: This paper investigates the vibrational behavior of sandwich conical shells with geodesic lattice core and variable skin thicknesses using analytical and numerical approaches. The filament wound conical shell has been considered to have varying skin thickness along the longitudinal direction. The smeared stiffener approach has been used to obtain the equivalent stiffness parameters due to the geodesic lattice core via the force and moment analyses of a unit cell. Superimposing the stiffness contribution of the stiffeners with those due to the inner and outer skins, one can calculate the equivalent stiffness of the whole structure. The equations of motion have been formulated based on the first-order shear deformation theory. The power series method has been implemented for extracting the natural frequencies of vibration. To validate the analytical results, a 3-D finite element model has been provided which is then used to conduct an extensive parametric study. The comparisons indicate an acceptable agreement between the two approaches. Moreover, the effect of variable skin thickness on the natural frequency has been examined. Furthermore, the influences of skin lamination angle, semi-vertex angle of the cone and stiffeners orientation angle have been discussed. The obtained results can be used for future relevant researches.

MSC:

74K25 Shells
74H45 Vibrations in dynamical problems in solid mechanics
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Mustafa, B. A. J. and Ali, R., An energy method for free vibration analysis of stiffened circular cylindrical shells, Comput. Struct.32 (1989) 355-363, https://doi.org/10.1016/0045-7949(89)90047-3. · Zbl 0702.73081
[2] Gan, L., Li, X. and Zhang, Z., Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach, J. Sound Vib.326 (2009) 633-646, https://doi.org/10.1016/j.jsv.2009.05.001.
[3] Mead, D. J. and Bardell, N. S., Free vibration of a thin cylindrical shell with periodic circumferential stiffeners, J. Sound Vib.115 (1987) 499-520, https://doi.org/10.1016/0022-460X(87)90293-8.
[4] Bardell, N. S. and Mead, D. J., Free vibration of an orthogonally stiffened cylindrical shell, part I: Discrete line simple supports, J. Sound Vib.134 (1989) 29-54, https://doi.org/10.1016/0022-460X(89)90735-9.
[5] Bardell, N. S. and Mead, D. J., Free vibration of an orthogonally stiffened cylindrical shell, part II: Discrete general stiffeners, J. Sound Vib.134 (1989) 55-72, https://doi.org/10.1016/0022-460X(89)90736-0.
[6] Jafari, A. A. and Bagheri, M., Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods, Thin-Walled Struct.44 (2006) 82-90, https://doi.org/10.1016/j.tws.2005.08.008.
[7] Jafari, A. A. and Bagheri, M., Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution, J. Sound Vib.296 (2006) 353-67, https://doi.org/10.1016/j.jsv.2006.03.001.
[8] Zhao, X., Liew, K. M. and Ng, T. Y., Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners, International J. Solids Struct.39 (2002) 529-45, https://doi.org/10.1016/S0020-7683(01)00194-9. · Zbl 1045.74028
[9] Sheng, G. G. and Wang, X., The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells, Appl. Math. Model.56 (2018) 389-403, https://doi.org/10.1016/j.apm.2017.12.021. · Zbl 1480.74124
[10] Kidane, S., Li, G., Helms, J., Pang, S.-S. and Woldesenbet, E., Buckling load analysis of grid stiffened composite cylinders, Composites B Eng.34 (2003) 1-9, https://doi.org/10.1016/S1359-8368(02)00074-4.
[11] Wodesenbet, E., Kidane, S. and Pang, S.-S., Optimization for buckling loads of grid stiffened composite panels, Composite Struct.60 (2003) 159-69, https://doi.org/10.1016/S0263-8223(02)00315-X.
[12] Yazdani, M., Rahimi, H., Khatibi, A. and Hamzeh, S., An experimental investigation into the buckling of GFRP stiffened shells under axial loading, Sci. Res. Essay4 (2009) 914-20.
[13] Yazdani, M. and Rahimi, G. H., The behavior of GFRP-stiffened and -unstiffened shells under cyclic axial loading and unloading, J. Reinforced Plastics Composites30 (2011) 440-5, https://doi.org/10.1177/0731684411398537.
[14] Yazdani, M. and Rahimi, G. H., The Effects of Helical Ribs’ Number and Grid Types on the Buckling of Thin-walled GFRP-stiffened Shells under Axial Loading, J. Reinforced Plastics Composites29 (2010) 2568-75, https://doi.org/10.1177/0731684409355202.
[15] Hemmatnezhad, M., Rahimi, G. H. and Ansari, R., On the free vibrations of grid-stiffened composite cylindrical shells, Acta Mech225 (2014) 609-23, https://doi.org/10.1007/s00707-013-0976-1. · Zbl 1401.74198
[16] Hemmatnezhad, M., Rahimi, G. H., Tajik, M. and Pellicano, F., Experimental, numerical and analytical investigation of free vibrational behavior of GFRP-stiffened composite cylindrical shells, Composite Struct.120 (2015) 509-18, https://doi.org/10.1016/j.compstruct.2014.10.011.
[17] Rahimi, G. H., Zandi, M. and Rasouli, S. F., Analysis of the effect of stiffener profile on buckling strength in composite isogrid stiffened shell under axial loading, Aerospace Sci. Technol.24 (2013) 198-203, https://doi.org/10.1016/j.ast.2011.11.007.
[18] Li, Z.-M. and Qiao, P., Nonlinear vibration analysis of geodesically-stiffened laminated composite cylindrical shells in an elastic medium, Composite Struct.111 (2014) 473-87, https://doi.org/10.1016/j.compstruct.2014.01.022.
[19] Amabili, M. and Balasubramanian, P., Nonlinear forced vibrations of laminated composite conical shells by using a refined shear deformation theory, Composite Struct.249 (2020) 112522, https://doi.org/10.1016/j.compstruct.2020.112522.
[20] Amabili, M. and Balasubramanian, P., Nonlinear vibrations of truncated conical shells considering multiple internal resonances, Nonlinear Dyn100 (2020) 77-93, https://doi.org/10.1007/s11071-020-05507-8.
[21] Bagheri, H., Kiani, Y. and Eslami, M. R., Free vibration of joined conical-cylindrical-conical shells, Acta Mech229 (2018) 2751-64, https://doi.org/10.1007/s00707-018-2133-3. · Zbl 1397.74134
[22] Kouchakzadeh, M. A. and Shakouri, M., Free vibration analysis of joined cross-ply laminated conical shells, Int. J. Mech. Sci.78 (2014) 118-25, https://doi.org/10.1016/j.ijmecsci.2013.11.008.
[23] Tornabene, F., Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Eng.198 (2009) 2911-35, https://doi.org/10.1016/j.cma.2009.04.011. · Zbl 1229.74062
[24] Sofiyev, A. H., Korkmaz, K. A., Mammadov, Z. and Kamanli, M., The vibration and buckling of freely supported non-homogeneous orthotropic conical shells subjected to different uniform pressures, Int. J. Pressure Vessels Piping86 (2009) 661-8, https://doi.org/10.1016/j.ijpvp.2009.03.012.
[25] Vasiliev, V. V., Barynin, V. A. and Razin, A. F., Anisogrid composite lattice structures - Development and aerospace applications, Composite Struct.94 (2012) 1117-27, https://doi.org/10.1016/j.compstruct.2011.10.023.
[26] Totaro, G. and Gürdal, Z., Optimal design of composite lattice shell structures for aerospace applications, Aerospace Sci. Technol.13 (2009) 157-64, https://doi.org/10.1016/j.ast.2008.09.001.
[27] Totaro, G., Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material, Composite Struct. (2016) 153, https://doi.org/10.1016/j.compstruct.2016.06.072.
[28] Morozov, E. V., Lopatin, A. V. and Nesterov, V. A., Buckling analysis and design of anisogrid composite lattice conical shells, Composite Struct.93 (2011) 3150-62, https://doi.org/10.1016/j.compstruct.2011.06.015.
[29] Sun, F., Fan, H., Zhou, C. and Fang, D., Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression, Composite Struct.101 (2013) 180-90, https://doi.org/10.1016/j.compstruct.2013.02.005.
[30] Zhang, H., Sun, F., Fan, H., Chen, H., Chen, L. and Fang, D., Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder, Composites Sci. Technol.100 (2014) 26-33, https://doi.org/10.1016/j.compscitech.2014.05.030.
[31] Tong, L., Buckling of Filament-Wound Laminated Conical Shells Under Axial Compression, AIAA J.37 (1999) 778-81, https://doi.org/10.2514/2.792.
[32] Sharghi, H., Shakouri, M. and Kouchakzadeh, M. A., An analytical approach for buckling analysis of generally laminated conical shells under axial compression, Acta Mech227 (2016) 1181-98, https://doi.org/10.1007/s00707-015-1549-2. · Zbl 1337.74021
[33] Irie, T., Yamada, G. and Kaneko, Y., Free vibration of a conical shell with variable thickness, J. Sound Vib.82 (1982) 83-94, https://doi.org/10.1016/0022-460X(82)90544-2. · Zbl 0507.73055
[34] Sivadas, K. R. and Ganesan, N., Vibration analysis of laminated conical shells with variable thickness, J. Sound Vib.148 (1991) 477-91, https://doi.org/10.1016/0022-460X(91)90479-4. · Zbl 0825.73331
[35] Sundarasivarao, B. S. K. and Ganesan, N., Deformation of varying thickness of conical shells subjected to axisymmetric loading with various end conditions, Eng. Fracture Mech.39 (1991) 1003-10, https://doi.org/10.1016/0013-7944(91)90106-B.
[36] Koiter, W. T., Elishakoff, I., Li, Y. W. and Starnes, J. H., Buckling of an axially compressed cylindrical shell of variable thickness, Int. J. Solids Struct.31 (1994) 797-805, https://doi.org/10.1016/0020-7683(94)90078-7. · Zbl 0802.73028
[37] Goldfeld, Y. and Arbocz, J., Buckling of Laminated Conical Shells Given the Variations of the Stiffness Coefficients, AIAA J.42 (2004) 642-9, https://doi.org/10.2514/1.2765.
[38] Nguyen, H. L. T., Elishakoff, I. and Nguyen, V. T., Buckling under the external pressure of cylindrical shells with variable thickness, Int. J. Solids Struct.46 (2009) 4163-8, https://doi.org/10.1016/j.ijsolstr.2009.07.025. · Zbl 1176.74070
[39] Zarei, M., Rahimi, G. H. and Hemmatnezhad, M., Free vibrational characteristics of grid-stiffened truncated composite conical shells, Aerospace Sci. Technol.99 (2020) 105717, https://doi.org/10.1016/j.ast.2020.105717.
[40] Zarei, M., Rahimi, G. H. and Hemmatnezhad, M., Global buckling analysis of laminated sandwich conical shells with reinforced lattice cores based on the first-order shear deformation theory, Int. J. Mech. Sci.187 (2020) 105872, https://doi.org/10.1016/j.ijmecsci.2020.105872.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.