×

On concentration phenomena of least energy solutions to nonlinear Schrödinger equations with totally degenerate potentials. (English) Zbl 1403.35279

This paper consider the NLS equation with an electric potential \(V\) \[ -h^{2}\Delta u+V\left( x\right) u=f\left( u\right) \text{ in }\mathbb{R}^{N},\text{ }u>0,\text{ }u\in H^{1}\left( \mathbb{R}^{N}\right),\tag{1} \] where \(h>0,\) the dimension \(N\geq1\), the potential \(V\) is assumed to satisfy the following: \(V\in C^{1}\left( \mathbb{R}^{N};\mathbb{R}\right) ,\) \(V\left( x\right) \rightarrow+\infty,\) as \(\left| x\right| \rightarrow+\infty,\) and \(\inf_{x\in\mathbb{R}^{N}}V\left( x\right) =1\) and \(f\) is the nonlinear term which in the simplest settings includes the case \(f\left( t\right) =t^{p}\) with \(1<p<\infty,\) if \(N=1,2,\) and \(1<p<\left( N+2\right) /\left( N-2\right) \) if \(N\geq3.\) The author studies the concentration phenomena of the least energy solution for the settled problem. More precisely, he studies the asymptotic location of the concentration point of the least energy solutions. The author extends the result of the paper [G. Lu and J. Wei, C. R. Acad. Sci., Paris, Sér. I, Math. 326, No. 6, 691–696 (1998; Zbl 0911.35047)] where the precise asymptotic location of the concentration point of the least energy solutions for (1) with \(f\left( t\right) =t^{p}\) were considered. This extension is in several directions. Firstly, the author considers more general nonlinearities \(f\left( u\right) .\) Also, he drops the connectivity condition of the interior of \(\Omega=\{\left. x\in \mathbb{R}^{N}\right| V\left( x\right) =\inf_{y\in\mathbb{R}^{N}}V\left( y\right) \}\) and he relaxes the assumptions on \(V\). The proof is based on a modification of the method developed in [M. del Pino and P. L. Felmer, Indiana Univ. Math. J. 48, No. 3, 883–898 (1999; Zbl 0932.35080)] employing the rearrangement technique, without using the so-called uniqueness-non degeneracy assumption.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B40 Asymptotic behavior of solutions to PDEs
35J20 Variational methods for second-order elliptic equations

References:

[1] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997), 285-300. · Zbl 0896.35042 · doi:10.1007/s002050050067
[2] M. Badiale and E. Serra, Semilinear elliptic equations for beginners , Springer, London, 2011. · Zbl 1214.35025
[3] H. Berestycki, T. Gallouët and O. Kavian, Equations de champs scalaires euclidiens nonlinéaires dans le plan, C. R. Acad. Sc. Paris, Série I Math. 297 (1983), 307-310. · Zbl 0544.35042
[4] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313-375. · Zbl 0533.35029
[5] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), 185-200. · Zbl 1132.35078 · doi:10.1007/s00205-006-0019-3
[6] S. Cingolani, L. Jeanjean and K. Tanaka, Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differential Equations 53 (2015), 413-439. · Zbl 1326.35333 · doi:10.1007/s00526-014-0754-5
[7] M. del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121-137. · Zbl 0844.35032 · doi:10.1007/BF01189950
[8] M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 127-149. · Zbl 0901.35023
[9] M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), 883-898. · Zbl 0932.35080
[10] M. del Pino, M. Kowalczyk and J. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math. 60 (2007), 113-146. · Zbl 1123.35003
[11] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Funct. Anal. 69 (1986), 397-408. · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[12] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\bf{R}^n\), Advances in Math., Supplementary Studies 7 A (1981), 369-402. · Zbl 0469.35052
[13] M. Grossi and A. Pistoia, Locating the peak of ground states of nonlinear Schrödinger equations, Houston J. Math. 31 (2005), 621-635. · Zbl 1082.35139
[14] Q. Han and F. Lin, Elliptic partial differential equations, Second edition , Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1, 2011. · Zbl 1210.35031
[15] E. H. Lieb and M. Loss, Analysis, Second edition , American Mathematical Society, Providence, RI, 14, 2001. · Zbl 0966.26002
[16] G. Lu and J. Wei, On nonlinear Schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris Sr. I Math. 326 (1998), 691-696. · Zbl 0911.35047
[17] W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. XLIV (1991), 819-851. · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[18] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768. · Zbl 0838.35009 · doi:10.1002/cpa.3160480704
[19] Y. G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential of the class \((V)_a\), Commun. Partial Differ. Eq. 13 (1988), 1499-1519. · Zbl 0702.35228
[20] Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multi-well potentials, Commun. Math. Physics 131 (1990), 375-399.
[21] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys 43 (1992), 270-291. · Zbl 0763.35087
[22] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys. 153 (1993), 229-244. · Zbl 0795.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.