×

Asymptotics of Sobolev embeddings and singular perturbations for the \(p\)-Laplacian. (English) Zbl 0996.35016

From the introduction: We consider the best constant \(S(\Omega_\lambda)\) for the embedding of \(W^{1,p} (\Omega_\lambda)\) into \(L^q(\Omega_\lambda)\) where \(1<p<2\), \(p<q< {Np\over N-p}\). Here \(\Omega_\lambda = \lambda \Omega\) with \(\Omega\) a smooth, bounded domain in \(\mathbb{R} ^n\) and \(\lambda\) a large positive number. It is proven by the validity of the expansion \[ S(\Omega_\lambda) = S(\mathbb{R}^n_+) - \lambda^{-1} \gamma \max_{x\in \partial \Omega}H(x) + o(\lambda^{-1}) \] as \(\lambda \to \infty\), where \(\gamma\) is a positive constant depending on \(p,q\) and \(N\). The behavior of associated extremals \(u_\lambda\), which satisfy the Euler-Lagrange equation \[ \Delta_p u_\lambda-|u_\lambda|^{p-2} u_\lambda+|u_\lambda|^{q-2} u_\lambda=0 \quad\text{in }\Omega_\lambda, \]
\[ u>0 \quad\text{in }\Omega_\lambda, \qquad \frac{\partial u}{\partial\eta}=0\quad\text{on }\partial\Omega_\lambda, \] where \(\Delta_p\) stands for the \(p\)-Laplacian operator, \(\Delta_p u= \text{div}(|\nabla u|^{p-2} \nabla u)\), is also analyzed.

MSC:

35J20 Variational methods for second-order elliptic equations
35B25 Singular perturbations in context of PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313 – 345. , https://doi.org/10.1007/BF00250555 H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), no. 4, 347 – 375. · Zbl 0533.35029 · doi:10.1007/BF00250556
[2] Lucio Damascelli, Filomena Pacella, and Mythily Ramaswamy, Symmetry of ground states of \?-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal. 148 (1999), no. 4, 291 – 308. · Zbl 0937.35050 · doi:10.1007/s002050050163
[3] M. del Pino, C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains. Comm. Partial Differential Equations, to appear. · Zbl 1030.46037
[4] Manuel Del Pino and Patricio L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), no. 3, 883 – 898. · Zbl 0932.35080 · doi:10.1512/iumj.1999.48.1596
[5] E. DiBenedetto, \?^{1+\?} local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827 – 850. · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5
[6] C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1 – 27. · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[7] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109 – 145 (English, with French summary). P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223 – 283 (English, with French summary).
[8] Wei-Ming Ni and Izumi Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819 – 851. · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[9] Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247 – 281. · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[10] J. Serrin, M. Tang. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49 (2000), no. 3, 897-923. · Zbl 0979.35049
[11] Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126 – 150. · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[12] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191 – 202. · Zbl 0561.35003 · doi:10.1007/BF01449041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.