×

Nonlinear reduced order homogenization of materials including cohesive interfaces. (English) Zbl 1329.74240

Summary: The mechanical response of composite materials is strongly influenced by the nonlinear behavior of the interface between the constituents. In order to make reliable yet computationally efficient predictions for such materials, a reduced order model is developed. Conceptual ideas of the NTFA are adopted. The key idea is to parameterize the displacement jumps on the cohesive interfaces by a reduced basis of global ansatz functions. Micromechanical considerations and the potential structure of the constitutive models lead to a variational formulation and reduced equilibrium conditions. The effect of the preanalysis phase on the accuracy is investigated using geometrically optimal training directions. The reduced model is tested for three-dimensional microstructures. Besides the effective stress response, the tension-compression asymmetry and the distribution of the separation of the interface are investigated. Memory savings on the order of \(10^5\) are realized. The computing time is reduced considerably.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI

References:

[1] Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937-6955 · Zbl 1057.74031 · doi:10.1016/S0020-7683(03)00346-9
[2] Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477-5502 · Zbl 1112.74471 · doi:10.1016/j.cma.2003.12.071
[3] Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143-154 · Zbl 1286.74081 · doi:10.1016/j.cma.2013.03.007
[4] Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186-217 · Zbl 1423.74881 · doi:10.1016/j.cma.2014.05.006
[5] Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin
[6] Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49-58 · JFM 55.1110.02 · doi:10.1002/zamm.19290090104
[7] Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335-342 · Zbl 0111.41401 · doi:10.1016/0022-5096(62)90004-2
[8] Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343-352 · Zbl 0119.40105 · doi:10.1016/0022-5096(62)90005-4
[9] Mori T, Tanaka K (1973) Average stress in a matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 23:571-574 · doi:10.1016/0001-6160(73)90064-3
[10] Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam · Zbl 0924.73006
[11] Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13-14):3647-3679 · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[12] Fritzen F, Böhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48:706-718 · Zbl 1236.74058 · doi:10.1016/j.ijsolstr.2010.11.010
[13] Ponte-Castañeda P (1991) The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45-71 · Zbl 0734.73052 · doi:10.1016/0022-5096(91)90030-R
[14] Ponte-Castañeda P (1992) New variational principles in plasticity and their application to composite materials. J Mech Phys Solids 40(8):1757-1788 · Zbl 0764.73103 · doi:10.1016/0022-5096(92)90050-C
[15] Suquet P (1992) On bounds for the overall potential of power law materials containing voids with an arbitrary shape. Mech Res Commun 19(1):51-58 · Zbl 0807.73041 · doi:10.1016/0093-6413(92)90012-Y
[16] Ponte-Castañeda P (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I theory. J Mech Phys Solids 50(4):737-757 · Zbl 1116.74412 · doi:10.1016/S0022-5096(01)00099-0
[17] Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J Mech Phys Solids 55(9):1932-1963 · Zbl 1170.74044 · doi:10.1016/j.jmps.2007.02.003
[18] Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: II: A second-order procedure. J Mech Phys Solids 55(9):1964-1992 · Zbl 1170.74045 · doi:10.1016/j.jmps.2007.02.004
[19] Danas K, Ponte-Castañeda P (2009) A finite-strain model for anisotropic viscoplastic porous media: I-Theory. Eur J Mech A 28(3):387-401 · Zbl 1158.74445 · doi:10.1016/j.euromechsol.2008.11.002
[20] Feyel F, Chaboche JL (2000) FE \[^22\] multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3-4):309-330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[21] Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. J Numer Methods Eng 55:1285-1322 · Zbl 1027.74056 · doi:10.1002/nme.515
[22] Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48-51):5525-5550 · Zbl 1112.74469 · doi:10.1016/j.cma.2003.12.073
[23] Drosopoulos GA, Wriggers P, Stavroulakis GE (2014) A multi-scale computational method including contact for the analysis of damage in composite materials. Comput Mater Sci 95:522-535 · doi:10.1016/j.commatsci.2014.08.004
[24] Carrere N, Maire JF, Kruch S, Chaboche JL (2004) Multiscale analysis of SiC/Ti composites. Mater Sci Eng A 365(1—-2):275-281 (Multiscale Materials Modelling) · doi:10.1016/j.msea.2003.09.036
[25] Verhoosel CV, Remmers JJC, Gutiérrez MA, de Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8-9):1155-1179 · Zbl 1197.74139 · doi:10.1002/nme.2854
[26] Fritzen F, Hodapp M (2015) The Finite Element Square Reduced (FE \[^{{2}\text{R}}2\] R) method with GPU acceleration: towards threedimensional two-scale simulations. Int J Numer Meth Eng (submitted) · Zbl 1352.74352
[27] Ladevèze P, Passieux JC, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21-22):1287-1296. doi:10.1016/j.cma.2009.06.023 · Zbl 1227.74111 · doi:10.1016/j.cma.2009.06.023
[28] Lamari H, Ammar A, Cartraud P, Legrain G, Chinesta F, Jacquemin F (2010) Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. Arch Comput Methods Eng 17(4):373-391. doi:10.1007/s11831-010-9051-4 · Zbl 1269.74187 · doi:10.1007/s11831-010-9051-4
[29] Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351-372. doi:10.1007/s11831-010-9053-2 · Zbl 1269.74209 · doi:10.1007/s11831-010-9053-2
[30] Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75-89. doi:10.1002/nme.2406 · Zbl 1195.74299 · doi:10.1002/nme.2406
[31] Ryckelynck D, Benziane D (2010) Multi-level a priori hyper reduction of mechanical models involving internal variables. Comput Methods Appl Mech Eng 199:1134-1142 · Zbl 1227.74093 · doi:10.1016/j.cma.2009.12.003
[32] Astrid P, Weiland S, Willcox K, Backx T (2004) Missing point estimation in models described by proper orthogonal decomposition. In: 43rd IEEE conference on decision and control, 2004. CDC, vol 2, pp 1767-1772. doi:10.1109/CDC.2004.1430301 · Zbl 1367.93110
[33] Astrid P, Weiland S, Willcox K, Backx T (2008) Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Autom Control 53(10):2237-2251. doi:10.1109/TAC.2008.2006102 · Zbl 1367.93110 · doi:10.1109/TAC.2008.2006102
[34] Barrault M, Maday Y, Nguyen N, Patera A (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math Acad Sci Paris Ser I 339:667-672 · Zbl 1061.65118 · doi:10.1016/j.crma.2004.08.006
[35] Chaturantabut S, Sorensen DC (2012) A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J Numer Anal 50(1):46-63 · Zbl 1237.93035 · doi:10.1137/110822724
[36] Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computationalmultiscale homogenization. Comput Methods Appl Mech Eng 276:149-189. doi:10.1016/j.cma.2014.03.011 · Zbl 1423.74785 · doi:10.1016/j.cma.2014.03.011
[37] Engquist EWB (2003) The heterognous multiscale methods. Commun Math Sci 1(1):87-132 · Zbl 1093.35012 · doi:10.4310/CMS.2003.v1.n1.a8
[38] Abdulle A, Bai Y (2012) Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J Comput Phys 231(21):7014-7036. doi:10.1016/j.jcp.2012.02.019 · Zbl 1284.65161 · doi:10.1016/j.jcp.2012.02.019
[39] Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Methods Eng 84(7):803-829 · Zbl 1202.74170
[40] Fritzen F, Böhlke T (2013) Reduced basis homogenization of viscoelastic composites. Compos Sci Technol 76:84-91 · doi:10.1016/j.compscitech.2012.12.012
[41] Halphen B, Nguyen QS (1975) Sur les matériaux standards generalisés. Journal de Mécanique 14(1):39-63 · Zbl 0308.73017
[42] Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T (2012) Computational homogenization of elasto-plastic porous metals. Int J Plast 29:102-119 · doi:10.1016/j.ijplas.2011.08.005
[43] Feyel F (1999) Multiscale FE \[^22\] elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1-4):344-354 · Zbl 1116.74412
[44] Feyel F (2003) A multilevel finite element method (FE \[^22)\] to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(192):3233-3244 · Zbl 1054.74727 · doi:10.1016/S0045-7825(03)00348-7
[45] Fritzen F (2011) Microstructural modeling and computational homogenization of the physically linear and nonlinear constitutive behavior of micro-heterogeneous materials. Schriftenreihe Kontinuumsmechanik im Maschinenbau 1, KIT Scientific Publishing, Karlsruhe. ISBN 978-3-86644-699-1 · Zbl 1236.74058
[46] Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33-36):2723-2737 · Zbl 1228.74067 · doi:10.1016/j.cma.2009.03.017
[47] Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. J Multiscale Comput Eng 11(3):201-225 · doi:10.1615/IntJMultCompEng.2013005374
[48] Fritzen F, Kochmann D (2014) Material instability-induced extreme damping in composites: a computational study. Int J Solids Struct 51:4101-4112 · doi:10.1016/j.ijsolstr.2014.07.028
[49] Böhlke T, Brüggemann C (2001) Graphical representation of the generalized Hooke’s law. Technische Mechanik 21(2):145-158
[50] Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437:311-327 · Zbl 0748.73007 · doi:10.1098/rspa.1992.0063
[51] Dvorak GJ, Bahei-El-Din YA, Wafa AM (1994) The modeling of inelastic composite materials with the transformation field analysis. Model Simul Mater Sci Eng 2(2):571-586 · doi:10.1088/0965-0393/2/3A/011
[52] Haasdonk B (2013) Convergence rates of the POD-Greedy method. ESAIM 47:859-873 · Zbl 1277.65074 · doi:10.1051/m2an/2012045
[53] Schölkopf B, Smola AJ (2002) Learning with Kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning series. MIT Press, Cambridge. ISBN 0-262-19475-9; 978-0-262-19475-4
[54] Wirtz D, Karajan N, Haasdonk B (2015) Surrogate modeling of multiscale models using kernel methods. Int J Numer Methods Eng 101(1):1-28 · Zbl 1352.65144 · doi:10.1002/nme.4767
[55] Leuschner M, Fritzen F, van Dommelen JAW, Hoefnagels JPM (2015) Potential-based constitutive models for cohesive interfaces: theory, implementation and examples. Compos Part B 68:38-50 · doi:10.1016/j.compositesb.2014.08.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.