×

Unified thermo-compositional-mechanical framework for reservoir simulation. (English) Zbl 1401.86012

Summary: We present a reservoir simulation framework for coupled thermal-compositional-mechanics processes. We use finite-volume methods to discretize the mass and energy conservation equations and finite-element methods for the mechanics problem. We use the first-order backward Euler for time. We solve the resulting set of nonlinear algebraic equations using fully implicit (FI) and sequential-implicit (SI) solution schemes. The FI approach is attractive for general-purpose simulation due to its unconditional stability. However, the FI method requires the development of a complex thermo-compositional-mechanics framework for the nonlinear problems of interest, and that includes the construction of the full Jacobian matrix for the coupled multi-physics discrete system of equations. On the other hand, SI-based solution schemes allow for relatively fast development because different simulation modules can be coupled more easily. The challenge with SI schemes is that the nonlinear convergence rate depends strongly on the coupling strength across the physical mechanisms and on the details of the sequential updating strategy across the different physics modules. The flexible automatic differentiation-based framework described here allows for detailed assessment of the robustness and computational efficiency of different coupling schemes for a wide range of multi-physics subsurface problems.

MSC:

86A60 Geological problems
76S05 Flows in porous media; filtration; seepage
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Aboustit, B; Advani, S; Lee, J, Variational principles and finite element simulations for thermo-elastic consolidation, Int. J. Numer. Anal. Methods Geomech., 9, 49-69, (1985) · Zbl 0553.73010 · doi:10.1002/nag.1610090105
[2] AD-GPRS: Automatic differentiation general purpose research simulator. https://supri-b.stanford.edu/research-areas/ad-gprs (2017)
[3] Armero, F; Simo, J, A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems, Int. J. Numer. Methods Eng., 35, 737-766, (1992) · Zbl 0784.73085 · doi:10.1002/nme.1620350408
[4] Aziz, K., Settari, A: Petroleum reservoir simulation. Applied Science Publishers (1979)
[5] Bevillon, D., Masson, R: Stability and convergence analysis of partially coupled schemes for geomechanical reservoir simulations. In: The European Conference on the Mathematics of Oil Recovery. Baveno, Italy (2000)
[6] Borja, I.: Plasticity: modeling and computation. Springer, Berlin (2013) · Zbl 1279.74003 · doi:10.1007/978-3-642-38547-6
[7] Butler, R, New approach to the modelling of steam-assisted gravity drainage, J. Can. Pet. Technol., 24, 42-51, (1985) · doi:10.2118/85-03-01
[8] Cao, H., Tchelepi, H.A., Wallis, J.R., Yardumian, H.E.: Parallel scalable unstructured CPR-type linear solver for reservoir simulation. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2005)
[9] Castelletto, N; White, JA; Tchelepi, HA, Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 1593-1618, (2015) · doi:10.1002/nag.2400
[10] Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2001)
[11] Coats, K.H.: An equation of state compositional model. Society of Petroleum Engineers (1980). https://doi.org/10.2118/8284-PA · Zbl 0455.76090
[12] Coussy, O.: Poromechanics. Wiley, New York (2004)
[13] Crisfield, M.: Non-linear finite element analysis of solids and structures. Wiley, New York (1996)
[14] David, C; Wong, T-F; Zhu, W; Zhang, J, Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust, Pure Appl. Geophys., 143, 425-456, (1994) · doi:10.1007/BF00874337
[15] Dean, R; Gai, X; Stone, C; Minkoff, S, A comparison of techniques for coupling porous flow and geomechanics, Soc. Petrol. Eng., 11, 132-140, (2006)
[16] Drucker, D; Prager, W, Soil mechanics and plastic analysis or limit design, Q. Appl. Math., 10, 157-165, (1952) · Zbl 0047.43202 · doi:10.1090/qam/48291
[17] Ehlers, W; Ellsiepen, P, Pandas: ein fe-system zur simulation von sonderproblemen der bodenmechanik. finite elemente in der baupraxis: modellierung, berechnung und konstruktion, Beiträge zur Tagung FEM, 98, 431-400, (1998)
[18] Fedorenko, R, A relaxation method for solving elliptic difference equations, USSR Comput. Math. Math. Phys., 1, 1092-1096, (1962) · Zbl 0163.39303 · doi:10.1016/0041-5553(62)90031-9
[19] Flemisch, B; Darcis, M; Erbertseder, K; Faigle, B; Lauser, A; Mosthaf, K; Müthing, S; Nuske, P; Tatomir, A; Wolff, M; Helmig, R, Dumux: DUNE for multi-{phase,component,scale,physics,...} flow and transport in porous media, Adv. Water Resour., 34, 1102-1112, (2011) · doi:10.1016/j.advwatres.2011.03.007
[20] Gai, X.: A coupled geomechanics and reservoir flow model on parallel computers. Ph.D. thesis University of Texas at Austin (2004)
[21] Garipov, T.T., Voskov, D., Tchelepi, H.A.: Rigorous coupling of geomechanics and thermal-compositional flow for SAGD and ES-SAGD operations. In: SPE Canada Heavy Oil Technical Conference. Calgary, Canada (2015). https://doi.org/10.2118/174508-MS
[22] Garipov, T.T., White, J., Lapene, A., Tchelepi, H.A.: Thermo-hydro-mechanical model for source rock thermal maturation. In: 50th US Rock Mechanics Geomechanics Symposium 2016. Houston, USA (2016)
[23] Hu, L; Winterfeld, PH; Fakcharoenphol, P; Wu, Y-S, A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs, J. Pet. Sci. Eng., 107, 1-11, (2013) · doi:10.1016/j.petrol.2013.04.005
[24] Huang, J; Griffiths, D, Return mapping algorithms and stress predictors for failure analysis in geomechanics, J. Eng. Mech., 135, 276-284, (2009) · doi:10.1061/(ASCE)0733-9399(2009)135:4(276)
[25] Hughes, T.: The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications (2012)
[26] Jha, B; Juanes, R, A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 139-153, (2007) · doi:10.1007/s11440-007-0033-0
[27] Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. International Journal for Numerical Methods in Engineering (2017) · Zbl 07867238
[28] Kim, J.: Sequential methods for coupled geomechanics and multiphase flow. Ph.D. thesis Stanford University (2010)
[29] Kim, J.: Unconditionally stable sequential schemes for thermoporomechanics: undrained-adiabatic and extended fixed-stress splits. In: SPE Reservoir Simulation Symposium. Houston, USA (2015). https://doi.org/10.2118/173294-MS
[30] Kim, J; Tchelepi, H; Juanes, R, Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 1591-1606, (2011) · Zbl 1228.74101 · doi:10.1016/j.cma.2010.12.022
[31] Kim, J; Tchelepi, HA; Juanes, R, Rigorous coupling of geomechanics and multiphase flow with strong capillarity, SPE J, 18, 1-123, (2013) · doi:10.2118/141268-PA
[32] Klevtsov, S., Castelletto, N., White, J., Tchelepi, H.: Block-preconditioned Krylov methods for coupled multiphase reservoir flow and geomechanics. In: ECMOR XIV-15th European Conference on the Mathematics of Oil Recovery (2016)
[33] Kolditz, O; Bauer, S; Bilke, L; Bottcher, N; Delfs, J; Fischer, T; Gorke, U; Kalbacher, T; Kosakowski, G; Mcdermott, C; Park, C; Radu, F; Rink, K; Shao, H; Shao, H; Sun, F; Sun, Y; Singh, A; Taron, J; Walther, M; Wang, W; Watanabe, N; Wu, Y; Xie, M; Xu, W; Zehner, B, Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/ chemical (THM/C) processes in porous media, Environ. Earth Sci., 67, 589-599, (2012) · doi:10.1007/s12665-012-1546-x
[34] Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New York (1998) · Zbl 0935.74004
[35] Li, P; Chalaturnyk, R, Gas-over-bitumen geometry and its SAGD performance analysis with coupled reservoir geomechanical simulation, J. Can. Pet. Technol., 46, 42-49, (2007)
[36] Li, P., Chalaturnyk, R., et al.: History match of the UTF phase A project with coupled reservoir geomechanical simulation. In: Canadian International Petroleum Conference. Petroleum Society of Canada (2005)
[37] Lie, K.-A.: An introduction to reservoir simulation using MATLAB: user guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT (2014) · Zbl 1425.76001
[38] Mainguy, M; Longuemare, P, Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanical simulators, Oil Gas Sci. Technol., 57, 355-367, (2002) · doi:10.2516/ogst:2002023
[39] Mandel, J, Consolidation des sols (etude mathématique)́, Geotechnique, 3, 287-299, (1953) · doi:10.1680/geot.1953.3.7.287
[40] Markert, B; Heider, Y; Ehlers, W, Comparison of monolithic and splitting solution schemes for dynamic porous media problems, Int. J. Numer. Methods Eng., 82, 1341-1383, (2010) · Zbl 1188.74065
[41] Mikelic, A; Wheeler, M, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 455-461, (2013) · Zbl 1392.35235 · doi:10.1007/s10596-012-9318-y
[42] Minkoff, S; Stone, C; Bryant, S; Peszynska, M; Wheeler, M, Coupled fluid flow and geomechanical deformation modeling, J. Pet. Sci. Eng., 38, 37-56, (2003) · doi:10.1016/S0920-4105(03)00021-4
[43] Minkoff, SE; Stone, C; Bryant, S; Peszynska, M; Wheeler, MF, Coupled fluid flow and geomechanical deformation modeling, J. Pet. Sci. Eng., 38, 37-56, (2003) · doi:10.1016/S0920-4105(03)00021-4
[44] Nikolaevskij, V.N.: Mechanics of porous and fractured media volume 8. World Scientific (1990) · Zbl 0795.73003
[45] Noorishad, J; Tsang, CF; Witherspoon, PA, Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach, J. Geophys. Res. Solid Earth, 89, 10365-10373, (1984) · doi:10.1029/JB089iB12p10365
[46] Ottosen, N., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005) · Zbl 0924.73075
[47] Park, K, Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis, Int. J. Numer. Methods Eng., 19, 1669-1673, (1983) · Zbl 0519.76095 · doi:10.1002/nme.1620191106
[48] Peneloux, A; Rauzy, E; Freze, R, A consistent correction for redlich-Kwong-soave volumes, Fluid Phase Equilib., 8, 7-23, (1982) · doi:10.1016/0378-3812(82)80002-2
[49] Prevost, JH, Partitioned solution procedure for simultaneous integration of coupled-field problems, Commun. Numer. Methods Eng., 13, 239-247, (1997) · Zbl 0878.73073 · doi:10.1002/(SICI)1099-0887(199704)13:4<239::AID-CNM51>3.0.CO;2-2
[50] Rahmati, E., Nouri, A., Fattahpour, V., et al.: Caprock integrity analysis during a sagd operation using an anisotropic elasto-plastic model. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)
[51] Rin, R.: Implicit Coupling Framework for Multi-Physics Reservoir Simulation. Ph.D. thesis Stanford University (2017)
[52] Rin, R., Tomin, P., Garipov, T., Voskov, D., Tchelepi, H.: General implicit coupling framework for multi-physics problems. In: SPE-182714-MS, SPE Reservoir Simulation Conference. Montgomery, USA (2017)
[53] Rutqvist, J, Status of the tough-flac simulator and recent applications related to coupled fluid flow and crustal deformations, Comput. Geosci., 37, 739-750, (2011) · doi:10.1016/j.cageo.2010.08.006
[54] Samier, P; Onaisi, A; Gennaro, S, A practical iterative scheme for coupling geomechanics with reservoir simulation, SPE Reserv. Eval. Eng., 11, 892-901, (2008) · doi:10.2118/107077-PA
[55] Settari, A; Walters, D, Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction, Soc. Petrol. Eng., 6, 14-17, (2001)
[56] Simo, J.C., Hughes, T.J.: Computational Inelasticity volume 7. Springer Science Business Media (2006) · Zbl 0934.74003
[57] Stüben, K, Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-451, (1983) · Zbl 0533.65064
[58] Thomas, L; Chin, L; Pierson, R; Sylte, J, Coupled geomechanics and reservoir simulation, Soc. Petrol. Eng., 8, 350-358, (2003)
[59] Tran, D; Settari, A; Nghiem, L, New iterative coupling between a reservoir simulator and a geomechanics module, Soc. Petrol. Eng., 9, 362-369, (2004)
[60] Voskov, D; Zaydullin, R; Lucia, A, Heavy oil recovery efficiency using SAGD, SAGD with propane co-injection and STRIP-SAGD, Comput. Chem. Eng., 88, 115-125, (2016) · doi:10.1016/j.compchemeng.2016.02.010
[61] Voskov, DV; Tchelepi, HA, Comparison of nonlinear formulations for two-phase multi-component eos based simulation, J. Pet. Sci. Eng., 82-83, 101-111, (2012) · doi:10.1016/j.petrol.2011.10.012
[62] Wallis, J.R.: Incomplete gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. In: 7th SPE Reservoir Simulation Symposium. San Francisco, USA (1983). https://doi.org/10.2118/12265-MS
[63] Wheeler, MF; Gai, X, Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity, Num Methods Partial Differential Equations, 23, 785-797, (2007) · Zbl 1115.74054 · doi:10.1002/num.20258
[64] White, JA; Castelletto, N; Tchelepi, HA, Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng., 303, 55-74, (2016) · Zbl 1425.74497 · doi:10.1016/j.cma.2016.01.008
[65] White, M., Oostrom, M.: Stomp: subsurface transport over multiple phases. version 4.0, user’s guide. Richland: Pacific Northwest National Laboratory (2006)
[66] Yang, D; Moridis, GJ; Blasingame, TA, A fully coupled multiphase flow and geomechanics solver for highly heterogeneous porous media, J. Comput. Appl. Math., 270, 417-432, (2014) · Zbl 1321.76062 · doi:10.1016/j.cam.2013.12.029
[67] Younis, R.M.: Modern advances in software and solution algorithms for reservoir simulation. Ph.D. thesis Stanford University (2011)
[68] Zaydullin, R., Voskov, D., Tchelepi, H.: Comparison of eos-based and k-values-based methods for three-phase thermal simulation. Transport in Porous Media, (pp. 1-24) (2016a). https://doi.org/10.1007/s11242-016-0795-7
[69] Zaydullin, R; Voskov, D; Tchelepi, H, Phase-state identification bypass method for three-phase thermal compositional simulation, Comput. Geosci., 20, 461-474, (2016) · Zbl 1392.76046 · doi:10.1007/s10596-015-9510-y
[70] Zhou, Y; Jiang, Y; Tchelepi, H, A scalable multistage linear solver for reservoir models with multisegment wells, Comput. Geosci., 17, 197-216, (2013) · Zbl 1382.86007 · doi:10.1007/s10596-012-9324-0
[71] Zhou, Y; Jiang, Y; Tchelepi, HA, A scalable multistage linear solver for reservoir models with multisegment wells, Comput. Geosci., 17, 197-216, (2013) · Zbl 1382.86007 · doi:10.1007/s10596-012-9324-0
[72] Zienkiewicz, O; Paul, D; Chan, A, Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems, Int. J. Numer. Methods Eng., 26, 1039-1055, (1988) · Zbl 0634.73110 · doi:10.1002/nme.1620260504
[73] Zienkiewicz, O., Taylor, R.: The finite element method for solid and structural mechanics. Elsevier, Amsterdam (2005) · Zbl 1084.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.